Revised Ordinance Governing Regulations and Curriculum

Of

B.Sc. CARDIAC CARE TECHNOLOGY COURSE • 2019

GandhiUniversityofHealth Sciences, Karnataka, Bangalore
The Emblem of the Rajiv Gandhi University of Health Sciences is a symbolic expression of the confluence of both Eastern and Western Health Sciences. A central wand with entwined snakes symbolises Greek and Roman Gods of Health called Hermis and Mercury is adapted as symbol of modern medical science. The pot above depicts Amrutha Kalasham of Dhanvanthri the father of all Health Sciences. The wings above it depicts Human Soul called Hamsa (Swan) in Indian philosophy. The rising Sun at the top symbolises knowledge and enlightenment. The two twigs of leaves in western philosophy symbolises Olive branches, which is an expression of Peace, Love and Harmony. In Hindu Philosophy it depicts the Vanaspathi (also called as Oushadi) held in the hands of Dhanvanthri, which are the source of all Medicines. The lamp at the bottom depicts human energy (kundalini). The script “Devahitham Yadayahu” inside the lamp is taken from Upanishath Shanthi Manthram (Bhadram Karnebh i Shrunuyanadev…), which says “May we live the full span of our lives allotted by God in perfect health” which is the motto of the Rajiv Gandhi University of Health Sciences.
Ref: ACA/DCD/AHS/B.Sc.CCT/362/2019-20 Date: 28/08/2019

NOTIFICATION

Sub: Revised Ordinance pertaining to Regulation and Curriculum of B.Sc. Cardiac Care Technology.

Ref: 1) Minutes of BOS Allied Health Sciences held on 13/05/2019
 2) Proceedings of Faculty meeting held on 15/05/2019
 3) Proceedings of AC meeting held on 17/06/2019
 4) Proceedings of Syndicate meeting held on 29/06/2019

In exercise of the powers vested under Section 35(2) of RGUHS Act, 1994, the Revised Ordinance pertaining to Regulation and the curriculum of B. Sc. Cardiac Care Technology is notified herewith as per Annexure.

The above Regulation shall be applicable to the students admitted to the said course from the academic year 2019-20 onwards.

By Order,

Sd/-

REGISTRAR

To

The Principals of all affiliated Allied Health Sciences Course colleges of RGUHS, Bangalore.

Copy to:
1. The Principal Secretary to Governor, Raj Bhavan, Bangalore – 560001
2. The Principal Secretary Medical Education, Health & Family Welfare Dept., M S Building, Dr.B.R. Ambedkar Veedhi, Bangalore – 01
3. PA to Vice – Chancellor/PA to Registrar/Registrar (Eva.)/Finance Officer, Rajiv Gandhi University Health Sciences, Bangalore
4. All Officers of the University Examination Branch/ Academic Section.
5. Guard File / Office copy.
REGULATIONS\&CURRICULUMFORBACHELOROF
B.Sc. CARDIAC CARE TECHNOLOGY-2019

1. Eligibility for admission:

A candidate seeking admission to the BSc. Cardiac Care Technology shall have studied English as one of the principal subject during the tenure of the course and shall have passed:

1. Two year Pre-University examination or equivalent as recognized by Rajiv Gandhi University of Health Sciences with, Physics, Chemistry and Biology as subjects of study.

 OR

2. Pre-Degree course from a recognized University considered as equivalent by RGUHS, (Two years after ten years of schooling) with Physics, Chemistry and Biology as subjects of study.

 OR

3. Any equivalent examination recognized by the Rajiv Gandhi University of Health Sciences, Bangalore for the above purpose with Physics, Chemistry and Biology as subjects of study.

 OR

4. The vocational higher secondary education course conducted by Vocational Higher Secondary Education, Government of Kerala with five subjects including Physics, Chemistry, Biology and English in addition to vocational subjects conducted is considered equivalent to plus TWO examinations of Government of Karnataka Pre University Course.

 OR

5. Candidates with two years diploma from a recognized Government Board in Cardiac Care Technology shall have passed class 12 [10+2] with Physics, Chemistry and Biology, as subjects or candidates with 3 years diploma from a recognized Government Board in Cardiac Care Technology should have studied Physics, Biology and Chemistry as subjects during the tenure of the course.
6. Lateral entry to second year of B.Sc.Cardiac Care Technology for candidates who have passed diploma program from the Government Boards and recognized by RGUHS, fulfilling the conditions specified above under Sl. No. 5 and these students are eligible to take admission on lateral entry system only in the same subject studied at diploma level from the academic year 2008-09 vide RGUHS Notification no. AUTH/AHS/317/2008-09 dated: 01.08.2008.

Note:

a. The candidate shall have passed individually in each of the subjects.

b. Candidates who have completed diploma or vocational course through Correspondence shall not be eligible for any of the courses mentioned above.

2. **Duration of the course:**

Duration shall be for a period of four years including one year of Internship.

3. **Medium of instruction:**

The medium of instruction and examination shall be in English.

4. **Scheme of examination:**

There shall be three examinations one each at the end of 1st, 2nd and 3rd year.

5. **Attendance**

Every candidate should have attended at least 80% of the total number of classes conducted in an academic year from the date of commencement of the term to the last working day as notified by university in each of the subjects prescribed for that year separately in theory and practical. Only such candidates are eligible to appear for the university examinations in their first attempt. Special classes conducted for any purpose shall not be considered for the calculation of percentage of attendance for eligibility. A candidate lacking in prescribed percentage of attendance in any subjects either in theory or practical in the first appearance will not be eligible to appear for the University Examination in that subject
6. Internal Assessment (IA):

1st Year B.Sc Cardiac Care Technology

Theory - 20 marks

Practical’s - 10 marks*. [Lab work- 06 marks and Record-04marks] 2nd

& 3rd year B.Sc Cardiac Care Technology

Theory – 20 Marks

Practicals – 20Marks

There shall be a minimum of two periodical tests preferably one in each term in theory and practical of each subject in an academic year. The average marks of the two tests will be calculated and reduced to 20. The marks of IA shall be communicated to the University at least 15 days before the commencement of the University examination. The University shall have access to the records of such periodical tests. The marks of the internal assessment must be displayed on the notice board of the respective colleges within a fortnight from the date test is held. If a candidate is absent for any one of the tests due to genuine and satisfactory reasons, such a candidate may be given a re-test within a fortnight.

* There shall be no University Practical Examination in First year.

7. Subject and hours of teaching for Theory and practical’s

The number of hours of teaching theory and practical, subject wise in first year, second year and third year are shown in Table-I, Table-II and Table-III

Main and Subsidiary subjects are common in first year for all the courses in Allied Health Science.

The number of hours for teaching theory and practical for main subjects in first, Second and Third year are shown in Table-I, II and III
Table - I Distribution of Teaching Hours in First Year Subjects Main subjects

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject</th>
<th>Theory No. of Hours</th>
<th>Practical No. of Hours</th>
<th>Total No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Human Anatomy</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>2.</td>
<td>Physiology</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>3.</td>
<td>Biochemistry</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>4.</td>
<td>Pathology-[Clinical pathology, Hematology & Blood -Banking]</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>5.</td>
<td>Microbiology</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>350</td>
<td>100</td>
<td>450</td>
</tr>
</tbody>
</table>

The classes in main and subsidiary subjects are to be held from Monday to Thursday. On Fridays and Saturdays students shall work in hospitals in the respective specialty or department chosen by them.

Subsidiary Subjects

- English 25 Hours
- Kannada 25 Hours
- Health-Care 40 Hours

Clinical/Lab posting –470 hours (Friday 9am – 1pm and 2pm - 4-30 pm
Saturday 9am - 1pm)
Table - II Distribution of Teaching Hours in Second Year Subjects Main

Subjects

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject</th>
<th>Theory No. of Hours</th>
<th>Practic No. of Hours</th>
<th>Clinic posting</th>
<th>Total No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medicine relevant cardiac care to technology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>2.</td>
<td>Section A Applied Pathology</td>
<td>30</td>
<td>30</td>
<td>--</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Section B Applied Microbiology</td>
<td>30</td>
<td>30</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Applied Pharmacology</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>Introduction to Cardiac care Technology</td>
<td>80</td>
<td>100</td>
<td>650</td>
<td>830</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>240</td>
<td>160</td>
<td>650</td>
<td></td>
</tr>
</tbody>
</table>

Subsidiary Subjects:

- Sociology: 20 Hours
- Constitution of India: 10 Hours
- Environmental Science & Health: 10 Hours
Table - III Distribution of Teaching Hours in Third Year Subjects Main

<table>
<thead>
<tr>
<th>No.</th>
<th>Subject</th>
<th>Theory No of Hours</th>
<th>Practical No of Hours</th>
<th>Clinical posting</th>
<th>Total No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Cardiac care Technology – Clinical</td>
<td>50</td>
<td>50</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>2.</td>
<td>Cardiac care Technology - Applied</td>
<td>50</td>
<td>50</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>3.</td>
<td>Cardiac care Technology – Advanced</td>
<td>50</td>
<td>50</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

Subsidiary Subjects:

Ethics, Database Management 50 Hours
Research & Biostatistics 20 Hours
Computer application 10 Hours

8. Schedule of Examination:

The university shall conduct two examinations annually at an interval of not less than 4 to 6 months as notified by the university from time to time. A candidate who satisfies the requirement of attendance, progress and conduct as stipulated by the university shall be eligible to appear for the university examination. Certificate to that effect shall be produced from the Head of the institution along with the application for examination and the prescribed fee.

9. Scheme of Examination

There shall be three examinations, one each at the end of I, II and III year. The examination for both main and subsidiary subjects for all courses in Allied Health Sciences shall be common in the first year.
Distribution of Subjects and marks for First Year, Second year & Third year University theory and practical Examinations are shown in the Table – IV, V & VI.

First year examination:

The University examination for 1st year shall consist of only theory examination and there shall be no University Practical Examination.

Second & Third year examination:

The University examination for 2nd and 3rd year shall consist of Written Paper & Practical. Written Examinations consists of 4 papers in the 2nd Year 3 papers in the 3rd Year:

Practical examination:

Three practical examinations, at the end 2nd Year and three practical examinations at the end of the 3rd year. One practical exam at the end of internship (4th year)

TABLE-IV

Distribution of Subjects and marks for First Year University theory Examination

<table>
<thead>
<tr>
<th>A</th>
<th>Main Subjects*</th>
<th>Written Paper</th>
<th>I A Theory</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>Marks</td>
<td>Marks</td>
</tr>
<tr>
<td>1</td>
<td>Basic Anatomy (Including Histology)</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Physiology</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Biochemistry</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Pathology</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Microbiology</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Subsidiary Subject**

	English	3 Hours	80	20	100
	Kannada	3 Hours	80	20	100
	Health Care	3 Hours	80	20	100

Note: I A = Internal Assessment

*Main Subjects shall have University Examination.

There shall be no University Practical Examination.

**Subsidiary subjects: Examination for subsidiary subjects shall be conducted by respective colleges.
TABLE - V
Distribution of Subjects and marks for Second Year Examination.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subjects</th>
<th>Theory</th>
<th>I.A</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>I.A</th>
<th>Sub total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Section A - Applied Pathology Section B - Applied Microbiology</td>
<td>50</td>
<td>20</td>
<td>120</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>ii</td>
<td>Introduction to Cardiac care Technology</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>40</td>
<td>10</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>iii</td>
<td>Applied Pharmacology</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>No Practical</td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>iv</td>
<td>Medicine relevant to technology</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>No Practical</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Subsidiary subjects: Examination for subsidiary Subjects shall be conducted by respective colleges

Distribution of Subsidiary Subjects and marks for Second Year Examination

<table>
<thead>
<tr>
<th>B</th>
<th>Subsidiary Subject**</th>
<th>Duration</th>
<th>Marks</th>
<th>I.A Theory Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sociology</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>ConstitutionofIndia</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Science &Health</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE - VI

Distribution of Subjects and marks for Third Year Examination.

<table>
<thead>
<tr>
<th>SL NO</th>
<th>THEORY</th>
<th>PRACTICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUBJECTS</td>
<td>SUBTOTAL</td>
</tr>
<tr>
<td></td>
<td>THEORY</td>
<td>I.A</td>
</tr>
<tr>
<td>1</td>
<td>Cardiac care technology clinical</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Cardiac care technology applied</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Cardiac care technology advanced</td>
<td>100</td>
</tr>
</tbody>
</table>

Practical-One common practical for all the three papers with equal weightage of marks i.e. 40 practical mark and 10 I.A. marks for each paper.

Distribution of Subsidiary Subjects and marks for Third Year Examination

<table>
<thead>
<tr>
<th>B</th>
<th>Subsidiary Subject**</th>
<th>Duration</th>
<th>Marks</th>
<th>I.A Theory Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ethics, Database Management</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>Research & Biostatistics</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Computer application</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subsidiary subjects : Examination for subsidiary subjects shall be conducted by respective college
10. PASS CRITERIA

10.1. First year examination

a. Main Subjects: A candidate is declared to have passed in a subject, if he/she secures 50% of marks in University Theory exam and internal assessment added together.

b. Subsidiary Subjects: The minimum prescribed marks for a pass in subsidiary subject shall be 35% of the maximum marks prescribed for a subject. The marks obtained in the subsidiary subjects shall be communicated to the University before the Commencement of the University examination.

10.2. Second and Third year Examination

a. Main Subjects: A candidate is declared to have passed the examination in a subject if he/she secures 50% of the marks in Theory and 50% in Practical separately. For a pass in theory, a candidate has to secure a minimum of 40% marks in the University conducted written examination, and 50% in aggregate in the University conducted written examination and internal assessment added together and for pass in Practical, a candidate has to secure a minimum of 40% marks in the university conducted Practical/Clinical examination and 50% in aggregate i.e. University conducted Practical/Clinical and Internal Assessment.

b. Subsidiary Subjects: The minimum prescribed marks for a pass in subsidiary subject shall be 35% of the maximum marks prescribed for a subject. The marks obtained in the subsidiary subjects shall be communicated to the University before the commencement of the University examination.

11. Carry over benefit

11.1 First year examination:

A candidate who fails in any two of the five main subjects of first year shall be permitted to carry over those subjects to second year. However, he/ she must pass the carry over subjects before appearing for second year examination.

11.2. Second year examination:

A candidate is permitted to carry over any one main subject to the third year but shall pass this subject before appearing for the third year examination.

12. Declaration of Class:
a. A candidate having appeared in all the subjects in the same examination and passed that examination in the first attempt and secures 75% of marks or more of grand total marks prescribed will be declared to have passed the examination with Distinction.

b. A candidate having appeared in all subjects in the same examination and passed that examination in the first attempt and secures 60% of marks or more but less than 75% of grand total marks prescribed will be declared to have passed the examination in First Class.

c. A candidate having appeared in all the subjects in the same examination and passed that examination in the first attempt and secures 50% of marks or more but less than 60% of grand total marks prescribed will be declared to have passed the examination in Second Class.

d. A candidate passing the university examination in more than one attempt shall be placed in Pass class irrespective of the percentage of marks secured by him/her in the examination.

e. The marks obtained by a candidate in the subsidiary subjects shall not be considered for award of Class or Rank.

[Please note, fraction of marks should not be rounded off clauses (a), (b) and (c)]

13. Eligibility for the award of Degree:

A candidate shall have passed in all the subjects of first, second and third year to be eligible for a compulsory one year of rotational internship. On completion of one year of the internship the candidate is then eligible for the award of degree.

14. Distribution of Type of Questions and Marks for Various Subjects

THEORY:

| SUBJECTS HAVING MAXIMUM MARKS= 100 (for **First year**) |
|---------------------------------|-----------------|-----------------|
| **Type of Questions** | **No. of Questions** | **Marks for Each Questions** |
| Long Essay | 2 | 10 |
| Short Essay | 10 | 05 |
| Short Answer | 10 | 03 |

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice) 10x3= 30 marks

Total= 100
<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No of Questions</th>
<th>Marks For Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essay Type</td>
<td>3 (2x 10)</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay Type</td>
<td>8(6 x 5)</td>
<td>05</td>
</tr>
<tr>
<td>Short Answers Type</td>
<td>12(10 x 3)</td>
<td>03</td>
</tr>
</tbody>
</table>

SUBJECTS HAVING MAXIMUM MARKS= 50 MARKS

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>05</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>05</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 1 Questions (No choice) 1x10= 10 marks
2. Short essay- 05 Questions (Choice is in Questions no 3) 05x5= 25 marks
3. Short answer- 05 Questions (Choice is in Questions no 3) 05x3= 15 marks
Total= 50

INTERNSHIP

One year compulsory rotational postings during which students have to work under the supervision of experienced staff
FIRST YEAR B.SC. CARDIAC CARE TECHNOLOGY

ANATOMY

No. of theory classes: 70 hours
No. of practical classes: 20 hours

Chapter 1
Introduction:

Theory:
- Definition of anatomy and its divisions
- Terms of location, positions and planes
- Epithelium-definition, classification, describe with examples, function
- Glands- classification, describe serous, mucous & mixed glands with examples
- Basic tissues – classification with examples

Practical:
- Histology of types of epithelium
- Histology of serous, mucous & mixed salivary gland

Chapter 2 Connective tissue:

Theory:
- Cartilage – types with example & histology theory
- Bone – Classification, names of bone cells, parts of long bone, microscopy of compact bone, names of all bones, vertebral column, intervertebral disc, fontanelles of fetal skull
- Joints – Classification of joints with examples, synovial joint (in detail for radiology)
- Muscular system: Classification of muscular tissue & histology
- Names of muscles of the body

Practical:
- Histology of the 3 types of cartilage
- Histology of compact bone (TS & LS)
- Histology of skeletal (TS & LS) & cardiac muscle
- Demo of all bones showing parts, radiographs of normal bones & joints
- Demonstration of important muscles of the body
3. **Cardiovascular system:**
 Theory:
 - Heart-size, location, chambers, exterior & interior, pericardium
 - Blood supply of heart
 - Systemic & pulmonary circulation
 - Branches of aorta, common carotid artery, subclavian artery, axillary artery, brachial artery, superficial palmar arch, femoral artery, internal iliac artery
 - Inferior vena cava, portal vein, portosystemic anastomosis, Great saphenous vein, Dural venous sinuses
 - Lymphatic system- cisterna chyli & thoracic duct, Histology of lymphatic tissues, Names of regional lymphatics, axillary and inguinal lymph nodes in brief

 Practical:
 - Demonstration of heart and vessels in the body
 - Histology of large artery & vein, medium sized artery & vein
 - Histology of lymph node, spleen, tonsil & thymus
 - Radiology: Normal chest radiograph showing heart shadows

4. **Gastro-intestinal system**
 Theory:
 - Parts of GIT: Oral cavity (lip, tongue (with histology), tonsil, dentition, pharynx, salivary glands, Waldeyer’s ring), Oesophagus, stomach, small and large intestine, liver, gall bladder, pancreas, spleen, peritoneum & reflections

 Practical:
 - Demonstration of parts of GIT
 - Radiographs of abdomen

5. **Respiratory system**
 - Parts of RS: nose, nasal cavity, larynx, trachea, lungs, bronchopulmonary segments, diaphragm
 - Histology of trachea, lung and pleura
 - Names of paranasal air sinuses

 Practical:
 - Demonstration of parts of respiratory system.
 - Normal radiographs of chest, X-ray paranasal sinuses
 - Histology of lung and trachea
6. **Urinary system**

Theory:
- Kidney, ureter, urinary bladder, male and female urethra
- Histology of kidney, ureter and urinary bladder

Practical:
- Demonstration of parts of urinary system
- Histology of kidney, ureter, urinary bladder
- Radiographs of abdomen-IVP, retrograde cystogram

7. **Reproductive system**

Theory:
- Parts of male reproductive system, testis, vas deferens, epididymis, prostate (gross & histology)
- Parts of female reproductive system, uterus, fallopian tubes, ovary (gross & histology)
- Mammary gland – gross

Practical:
- Demonstration of section of male and female pelvis with organs in situ
- Histology of testis, vas deferens, epididymis, prostate, uterus, fallopian tubes, ovary
- Radiographs of pelvis – hysterosalpingogram

8. **Endocrine glands**

Theory:
- Names of all endocrine glands in detail on pituitary gland, thyroid gland & suprarenal gland – (gross & histology)

Practical:
- Demonstration of the glands
- Histology of pituitary, thyroid, parathyroid, suprarenal glands

9. **Nervous system**

Theory:
- Neuron & Classification of NS
- Cerebrum, cerebellum, midbrain, Pons, medulla oblongata, spinal cord with spinal nerve (gross & histology) Meninges, Ventricles & cerebrospinal fluid, Names of basal nuclei
- Blood supply of brain
- Cranial nerves
- Sympathetic trunk & names of parasympathetic ganglia

Practical:
- Histology of peripheral nerve & optic nerve
• Demonstration of all plexuses and nerves in the body
• Demonstration of all part of brain
• Histology of cerebrum, cerebellum, spinal cord

10. Sensory organs

 Theory:
 • Skin: Skin-histology & Appendages of skin
 • Eye: Parts of eye & lacrimal apparatus, Extra-ocular muscles & nerve supply
 • Ear: parts of ear- external, middle and inner ear and contents

 Practical:
 • Histology of thin and thick skin
 • Demonstration and histology of eyeball
 • Histology of cornea & retina

11. Embryology:

 Theory:
 • Spermatogenesis & oogenesis
 • Ovulation, fertilization
 • Fetal circulation
 • Placenta

INTERNAL ASSESSMENT

Theory-average of 2 exams conducted
20 Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY

There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Anatomy shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for First year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>
1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice) 10x3= 30 marks
 Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>*</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

REFERENCE BOOKS:

1. William Davis (P) understanding Human Anatomy and Physiology – McGraw Hill
2. Chaursia- A Text Book of Anatomy
3. T. S. Ranganathan- A Text Book of Human Anatomy
4. Fattana, Human Anatomy (Description and applied)- Saundar’s & C P Prism Publishers, Bangalore
5. ESTER. M. Grishcimer- Physiology & Anatomy with Practical Considerations, J. P. Lippin Cott. Philadelphia
PHYSIOLOGY

Theory 70 hours Practical 20 hours

1. General Physiology
 Introduction to cell physiology, transport across cell membrane Homeostasis, Body Fluid compartment & measurement

2. Blood
 Introduction - composition and function of blood Plasma, proteins, types and functions
 Red blood cells - erythropoiesis, stages of differentiation, factors affecting it, function, normal count, physiological variation.
 Hemoglobin- function, concentration, types & methods of Hb estimation, fate of hemoglobin Jaundice- types Anaemia, types
 ESR, PCV, osmotic fragility & blood indices
 WBC- morphology, production, functions, normal count, differential count, variation, variation
 Immunity (in brief) Platelets- origin, morphology, normal count, function-Platelet plug, bleeding disorder
 Haemostasis - definition, normal haemostasis, clotting factors, mechanism of clotting, anticoagulants disorders of clotting factors.
 Blood group- ABO & Rh system, Rh incompatibility blood typing, cross matching, hazards of mismatched blood transfusion
 RES, spleen and lymph

3. Nerve-Muscle
 Neuron structure, types, neuroglia-types, nerve fibre classification, properties of nerve fibres,
 RMP, action potential, wallerian degeneration
 NMJ, blockers, Myasthenia gravis
 Classification of muscle, structure of skeletal muscle, sarcomere, contractile proteins Excitation contraction coupling, mechanism of muscle contraction, types of contraction Motor unit, fatigue, rigor mortis Smooth muscle

4. Respiratory system
 Physiological anatomy of respiratory system, muscles of respiration, respiratory & non respiratory functions of lungs, dead space
 Mechanics of breathing, intrapulmonary & pleural pressures Compliance, Surfactant, Hyaline membrane disease
 Lung volumes and capacities
 Respiratory membrane, transport of O2 & CO2
 Chemical regulation of respiration Neural regulation of respiration Hypoxia, Acclamatization, Dysbarism. Artificial respiration
 Definition-Periodic breathing, dyspnoea, apnoea, asphyxia, cyanosis
5. Cardiovascular system
 Introduction to CVS & general principles of circulation Properties of Cardiac muscle
 Cardiac cycle, heart sounds, Pulse Cardiac output, factors and measurement Heart rate
 BP-factors, measurement, Short term regulation Intermediate and long term regulation of BP
 ECG uses and significance, normal waveform, heart block Coronary circulation, Cutaneous
 circulation-Triple response Shock
 Effects of exercise on CVS and Respiratory system

6. Renal system, Skin and body temperature
 Kidneys- functions, structure of nephron, type, juxtaglomerular apparatus-structure and function, non-
excretory functions of kidney
 Glomerular filtration rate (GFR)- Definition, normal value, factors affecting GFR Tubular reabsorption
 sites, substance reabsorbed, mechanisms of reabsorption Tubular secretion sites, substance secreted,
 mechanisms of reabsorption
 Counter current mechanism of concentration of urine Obligatory and Facultative reabsorption of water
 Micturition reflex, Diuretics
 Artificial kidney, renal function tests-clearance tests
 Skin -structure and function, body temperature measurement, physiological variation,
 Regulation of body Temperature by physica,l chemical and nervous mechanisms-Role of
 Hypothalamus Hypothermia and fever

7. Digestive system
 Physiological anatomy, Enteric nervous system & functions of GIT Saliva- composition, regulation,disorder.
 Deglutition- stages & disorders
 Stomach-functions, composition and regulation of gastric juice Gastric motility, MMC, vomiting
 reflex.
 Pancreas- function, composition and regulation of pancreatic juice
 Liver & gall bladder-functions, bile- composition, secretion and regulation Small intestine- Succus
 entericus-composition, functions & movements Large intestine- functions, movements and defecation
 reflex
 Digestion & absorption of Carbohydrates, fats and proteins

8. Endocrine system
 Classification of Endocrine glands & their hormones & properties-chemistry and receptor, feedback
 mechanisms of hormone regulation.
 Anterior pituitary hormones- secretion, functions , disorders Posterior pituitary hormones- secretion ,
 functions , disorders Thyroid hormones- secretion, functions, disorders Parathyroid hormones-
 secretion, functions, disorders Calcium homeostasis & disorders
 Pancreatic hormones, Insulin and Glucagon- secretion, functions, disorders
 Adrenal cortex- Glucocorticoids & Mineralocorticoids, Androgen - secretion, functions, disorders
 Adrenal medulla- secretion, functions, disorders Thymus & Pineal gland
9. Reproductive system
Introduction to reproductive system, sex differentiation & Puberty Male reproductive system, functions of testosterone & Spermatogenesis
Female reproductive system, functions of Estrogen, Progesterone, Oogenesis Ovulation & Menstrual cycle
Physiological changes during pregnancy, pregnancy tests, parturition & lactation Male & Female contraceptive methods

10. Central nervous system
Introduction to CNS, Sensory receptors classification, properties Synapse– classification, properties
Sensory pathways: Anterior spino thalamic tract and Posterior column pathway
Lateral spino thalamic tract, Types of pain, Referred pain, Thalamus; nuclei and function
Classification of reflexes, Monosynaptic reflex- Stretch reflex, muscle spindle, inverse stretch reflex.
Polysynaptic reflex- Withdrawal reflex
Motor pathways: Pyramidal pathway and functions, UMN, LMN Cerebral cortex (Sensory and motor)-functions, Medulla and Pons-functions Cerebellum –functions, disorders
Basal ganglia-functions, disorders Hypothalamus and Limbic system-functions CSF, lumbar puncture
Sleep, EEG,
Autonomic Nervous System - Sympathetic and parasympathetic distribution and functions

11. Special senses
Vision – Functional anatomy of eye, visual pathway, lesion Refractive errors, color vision
Audition – Physiological anatomy of ear, Mechanism of hearing, auditory pathway, deafness Olfaction –modalities, receptor, function, abnormalities
Gustation-modalities, receptor, function, taste pathway, abnormalities

Practicals
Blood pressure Recording
Auscultation for Heart Sounds
Artificial Respiration
Determination of vital capacity

INTERNAL ASSESSMENT
Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of
questions and marks for Physiology shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice)
 2x10= 20 marks
2. Short essay - 10 Questions (Questions no 5 & 10 choice)
 10x5= 50 marks
3. Short answer - 10 Questions (Questions no 15 & 20 choice)
 10x3= 30 marks
 Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practicals</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Viva Voce</td>
<td>IA</td>
<td>Sub Total</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>120</td>
</tr>
</tbody>
</table>

REFERENCE BOOKS:
Chatterjee (CC) Human Physiology Latest Ed. Vol. 1, Medical Allied Agency
Choudhari (Sujith K) Concise Medical Physiology Latest Ed. New Central Book
Ganong (William F) Review of Medical Physiology. Latest Ed. Appleton
1. **Carbohydrate Chemistry [3 hours]**
 - Classification (Definition/ examples for each class)
 - Monosaccharides (classification depending upon number of carbon atoms and functional group with examples)
 - Disaccharides (Sucrose/ lactose/ maltose and their composition)
 - Polysaccharides
 a) Homopolysaccharides (Structure of starch and glycogen)
 b) Heteropolysaccharides (Functions)

2. **Lipid Chemistry [3 hours]**
 - Definition of lipids
 - Functions of lipids in the body
 - Classification of lipids (subclasses with examples)
 - Definition and Classification of fatty acids
 - Essential fatty acids
 - Phospholipids and their importance

3. **Amino-acid and Protein Chemistry [3 hours]**
 - General structure of D and L amino acids
 - Amino acids; Definition and Classification of amino acids with examples.
 - Peptides; definition & Biologically important peptides
 - Classification of Proteins based on composition, functions and shape (with examples)
 - Functions of amino acids and Proteins

4. **Nucleotide and Nucleic acid Chemistry [3 hours]**
 - Nucleosides & Nucleotides
 - Nucleic acid Definition & types
 - Composition & functions of DNA & RNA
 - Structure of DNA (Watson and Crick model)
 - Structure of tRNA, & functions of tRNA, rRNA, mRNA
 - Difference between DNA and RNA
5. Enzymes [5 hours]
 - Definition & Classification of Enzymes with example
 - Definitions of Active site, Cofactor (Coenzyme, Activator),
 - Proenzyme; Definition and examples (Pepsin & trypsin)

6. Digestion and Absorption [3 Hours]
 - General characteristics of digestion and absorption,
 - Digestion and absorption of carbohydrates, proteins and lipids.

7. Carbohydrate Metabolism [5 Hours]
 - Glycolysis; Aerobic, Anaerobic, Definition, Site and subcellular site, Steps with all the enzymes and coenzymes at each step, mention the regulatory enzymes, Energetics,
 - Citric acid cycle; Pyruvate dehydrogenase complex (reaction and coenzymes), Site and subcellular site, Reactions with all the enzymes and coenzymes, Regulatory enzymes, Energetics
 - Significance of HMP Shunt pathway.
 - Hyperglycemic and hypoglycemic hormones
 - Blood Glucose Regulation.
 - Diabetes mellitus (definition, classification, signs and symptoms)
 - Glycogen metabolism and gluconeogenesis

8. Lipid Metabolism [4 Hours]
 - Introduction to lipid metabolism, Lipolysis
 - Beta oxidation of fatty acids; Definition, Site and subcellular site, Activation of palmitic acid, Transport of activated palmitic acid into mitochondria, Reactions, Energetics.
 - Name the different ketone bodies. Note on ketosis

9. Amino acid and Protein Metabolism [3 Hours]
 - Introduction, transamination, deamination, Fate of ammonia, transport of ammonia,
 - Urea cycle.

10. Vitamins [5 Hours]
 - Definition and classification.
 - RDA, sources, coenzyme forms, biochemical functions and disorders for the following water soluble vitamins: Thiamine, Niacin, Pyridoxine, Cobalamin, Folic acid, Ascorbic acid
 - RDA, sources, coenzyme forms, biochemical functions and deficiency disorders for the following fat soluble vitamins: A and vitamin D

11. Mineral Metabolism [3 Hours]
 - Name the macro/ microminerals
• Iron: Sources, RDA, Functions and Disorders of deficiency and excess
• Calcium and phosphorus: Sources, RDA, functions, normal serum levels and hormones regulating their levels

12. Nutrition [6 hours]
• Balanced diet (Definition)
• Caloric value; Definition, Caloric values of carbohydrates, proteins and fats
• Total daily caloric requirements of an adult male and female,
• RDA (Definition, standard values for nutrients)
• Basal metabolic rate (BMR); Definition, Magnitude of BMR in men and women, Factors affecting BMR
• Thermic effect/ SDA of food (Definition, values for major macronutrients)
• Carbohydrates; Daily dietary requirement. 2. Dietary fibers (Definition, functions, importance and their daily requirements)
• Proteins; Daily requirement, Biological value. a. Definition b. Protein used as a standard for this, Protein sources with high and low biological value, Mutual supplementation of proteins (Definition, examples).
• Fats; Daily requirement, Essential fatty acids (Definition, functions, daily requirement and deficiency manifestations), Saturated and unsaturated fatty acids (Definition, sources, examples).
• Malnutrition

13. Renal Function Tests [2 hours]
• Name the different tests to assess the kidney functions
• Explain Creatinine clearance & Inulin clearance
• Urinary acidification test

14. Radioactive Isotopes [1 hour]
• Definition, clinical applications
• Biological effects of radiations

15. Clinical Biochemistry [5 hours]
A. Definitions of acid, base, pH and pKa [1 hour]
B. Buffers • Definition [2 hours]
• Henderson Hasselbalch equation,
• Principal buffer systems in the ECF ICF and urine
• Bicarbonate and phosphate buffer systems (pKa value, normal ratio of base/acid in the plasma)
• Acidosis & Alkalosis (Definition, classification, causes and biochemical findings)

C. Normal serum levels and condition where they are altered [2 hour]
• Glucose, Protein, urea, uric acid, and creatinine
• Bilirubin, cholesterol
• Serum Electrolytes

16. **Fundamental Chemistry (1 hour)**
- Valency, Molecular weight & Equivalent weight of elements and compounds. Normality, Molarity, Molality.

17. **Solutions: Definition, use, classification where appropriate, preparation and storage (5 hours)**
- Stock and working solutions.
- Molar and Normal solutions of compounds and acids. (NaCl, NaOH, HCl, H2SO4, H3PO4, CH3COOH etc.,)
- Preparation of percent solutions – w/w, v/v w/v (solids, liquids and acids), Conversion of a percent solution into a molar solution
- Saturated and supersaturated solutions
- Standard solutions. Technique for preparation of standard solutions and Storage. E.g: glucose, albumin etc.
- Dilutions- Diluting Normal, Molar and percent solutions. Preparing working standard from stock standard.
- Part dilutions: Specimen dilutions. Serial dilutions. Reagent dilution. Dilution factors

ASSIGNMENT TOPICS
1. Units of measurement
2. Hazards - Physical, Chemical, Biological
3. Arterial blood gas analysis
4. Responsibilities of Health care personnel
5. Biomedical waste management
PRACTICAL DEMONSTRATION [20 hours]

Color Reactions of Carbohydrates & amino acids.
Precipitation Reactions of proteins
Colorimetry Estimation of Blood glucose Folin Wu and enzymatic method
Estimation of Urea by DAM method

INTERNAL ASSESSMENT

Theory-average of 2 exams conducted

20 Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Biochemistry I shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice) 10x3= 30 marks

Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viva Voce</td>
<td>IA</td>
</tr>
<tr>
<td>Pricals</td>
<td>IA</td>
</tr>
<tr>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
</tbody>
</table>

Text Book References
• Biochemistry – 3rd revised edition by U Sathyanarayana & U Chakrapani
PATHOLOGY

Histo Pathology, Clinical Pathology, Haematology and Blood Banking

Theory – 70 hours
Practical – 20 hours

Clinical Pathology, Hematology and Blood Banking
Theory- 70 hours
Practicals- 20 hours

Clinical Pathology - Theory

• Introduction to clinical pathology
• Collection, transport, preservation and processing of various clinical specimens
• Urine examination - collection and preservation, Physical, chemical and microscopic examination for abnormal constituents
• Examination of Body fluids
• Examination of Cerebrospinal fluid (CSF)
• Sputum examination
• Examination of feces

II. Hematology – Theory

• Introduction to hematology
• Normal constituents of Blood, their structure and functions
• Collection of Blood samples
• Various anticoagulants used in Hematology
• Hemoglobin estimation, different methods and normal values
• Packed cell volume
• Erythrocyte sedimentation rate
• Normal Haemostasis
• Bleeding time. Clotting time, prothrombin time, Activated partial Thromboplastin time
III. Blood Bank- Theory

- Introduction blood banking
- Blood group system
- Collection and processing of blood for transfusion
- Compatibility testing
- Blood transfusion reactions

General Pathology:

Cell injury:

a. Definition, causes.

b. Cellular adaptations – Hypertrophy, hyperplasia, atrophy and metaplasia.

c. Types of cell injury – Reversible and irreversible; morphology of reversible injury.

d. Necrosis – Definition and patterns of tissue necrosis.

e. Intracellular accumulations – Lipids, cholesterol, proteins, glycogen and pigments; examples.

f. Pathologic calcification – Types and examples.

3) Inflammation:

a. Definition and signs of inflammation.

b. Types – Acute and chronic inflammation.

c. Acute inflammation – Causes, morphological patterns and outcome.

d. Chronic inflammation – Causes, morphology and examples.

e. Regeneration and repair – Mechanism of cutaneous wound healing.

f. Factors affecting wound healing.

4) Hemodynamic disorders:

a. Edema – Definition, pathogenesis and types: Renal, cardiac, pulmonary and cerebral.

b. Difference between transudate and exudate.

d. **Thrombosis** – Definition, mechanism of thrombus formation (Virchow’s triad) and fate of thrombus.

e. **Embolism** – Definition and types: Thromboembolism, fat, air and amniotic fluid embolism.

f. **Infarction** – Definition and examples.

- **5) Immune system:**

 a. Autoimmune diseases – General features, enumerate systemic and organ specific autoimmune diseases.

 b. Systemic lupus erythematosus – Manifestations and diagnosis.

- **6) Neoplasia:**

 a. Definition and nomenclature of tumors.

 b. Differences between benign and malignant neoplasms.

 c. Enumerate modes of carcinogenesis: Genes, physical, chemical and microbial agents of carcinogenesis.

 d. Modes of spread of tumors.

 e. Clinical aspects of neoplasia.

 f. Grading and staging of cancers.

 g. Laboratory diagnosis of cancer.

Practicals
1. Urine analysis- Physical, Chemical, Microscopic
2. Blood grouping and Rh typing
3. Hb estimation, packed cell volume (PCV), Erythrocyte Sedimentation rate (ESR)
4. Bleeding time and Clotting time
INTERNAL ASSESSMENT

Theory-average of 2 exams conducted

20 Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Pathology I shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice) 2x10= 20 marks
2. Short essay - 10 Questions (Questions no 5 & 10 choice) 10x5= 50 marks
3. Short answer - 10 Questions (Questions no 15 & 20 choice) 10x3= 30 marks

Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Viva Voce</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>100</td>
<td>-</td>
<td>20</td>
<td>120</td>
<td>*</td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

REFERENCE BOOKS:

1. Culling Histopathology techniques
2. Bancroft Histopathology techniques
3. Koss- Cytology
4. Winifred Diagnostic cytopathology
5. Orell Cytopathology
1. **Introduction (6 hrs)**
 Use of microscope in the study of bacteria - Types of microscopes - compound microscope, phase contrast microscope, electron microscope, fluorescent microscope, dark ground microscope.
 Morphology of bacterial cell

2. **Growth and Nutrition (6 hrs.)**
 Nutrition, growth and multiplication of bacteria, bacterial growth curve, culture media, culture methods, anaerobic culture methods.

3. **Sterilization and disinfection (8 hrs.)**
 Principles and use of equipments of sterilization, chemicals used in disinfection, testing of disinfectants.

4. **Biomedical waste management principle and practice Immunology (5hrs.)**
 Immunity - mechanism of immunity, classification, types Vaccines
 Immunization schedule
 Definition of antigen, antibody, list of antigen antibody reaction (no need of detailed account of antigen antibody reactions)
 Definition of hypersensitivity and classification (no need of detailed account of types of hypersensitivity)

5. **Infection (5 hrs.)**
 Definition, types and mode of transmission
 Hospital acquired infection - causative agents, mode of transmission and prophylaxis. Antimicrobial sensitivity testing

6. **Systematic bacteriology (15 hrs.)**
 Disease caused and laboratory diagnosis of medically important bacteria (Staphylococcus, coagulase negative Staphylococcus, MRSA, Streptococcus pyogenes, Pneumococcus, gonococcus, ...
E.coli, diarrhoeagenic E.coli, Salmonella, Vibrio cholerae, ElTor vibrios, Halophilic vibrios, Shigella, Mycobacterium tuberculosis, Mycobacterium leprae, Atypical Mycobacteria, Treponema pallidum, leptospira
(no need of classification, antigenic structure, virulence mechanism)

7. Parasitology (10 hrs.)
 Introduction to Parasitology
 List of medically important parasites and diseases (E.histolytica, Plasmodium, W.bancrofti, Ascaris, Ancylostoma, B.coli, G.lamblia, T.solium, T.saginata)
 Laboratory diagnosis of parasitic infection (No need of including life cycles)

8. Virology (10 hrs.)
 Introduction to virology
 List of medically important viruses and diseases (AIDS, Hepatitis, Rabies, Polio, Arbo viruses)
 Cultivation of viruses and laboratory diagnosis of viral infections

9. Mycology (5 hrs.)
 Introduction to Mycology
 Classification of medically important fungi - (based on morphology, spore production, disease production, taxonomy)
 List of medically important fungi and diseases (Candidiasis, Cryptococcus, Dermatophytes, Aspergillosis, Mucor Mycosis)
 Laboratory diagnosis of fungal infections.

Practicals (20 hrs.)
 Compound microscope (Demonstration) Demonstration of sterilization equipments
 Demonstration of culture media and culture methods Demonstration of antibiotic sensitivity testing Demonstration of serological tests - Widal, VDRL, ASO, CRP, RA Demonstration of gram stain and ZN staining
 Demonstration of Helminthic ova Grams stain, Acid fast staining Stool exam for Helminthic ova
 There shall be no university practical examination and Internal Assessment marks secured in practicals need not be sent to the university.

INTERNAL ASSESSMENT
 Theory-average of 2 exams
 conducted 20 Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.
SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Microbiology I shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice)
 2x10 = 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice)
 10x5 = 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice)
 10x3 = 30 marks
Total = 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Viva Voce</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>120</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Reference Books-
1. Ananthanarayana & Panikar Medical Microbiology- University Press
2. Robert Cruckshank- Medical Microbiology- The Practice of Medical Microbiology
3. Chatterjee- Parasitology- Interpretation to Clinical Medicine
4. Rippon- Medical Mycology
5. Emmons- Medical Mycology
6. Basic Laboratory methods in Parasitology, J P Bros, New Delhi
7. Basic Laboratory procedures in clinical bacteriology, J P Bros, New Delhi
8. Medical Parasitology- Ajit Damle
9. Introduction to medical microbiology- Ananthanarayana- Orient Longman Pvt. Ltd
SUBSIDIARY SUBJECTS

ENGLISH

COURSE OUTLINE

COURSE DESCRIPTION: This course is designed to help the student acquire a good command and comprehension of the English language through individual papers and conferences.

BEHAVIOURAL OBJECTIVES:
The student at the end of training is able to
1. Read and comprehend English language
2. Speak and write grammatically correct English
3. Appreciates the value of English literature in personal and professional life.

UNIT - I: INTRODUCTION:
Study Techniques
Organisation of effective note taking and logical processes of analysis and synthesis Use of the dictionary
Enlargement of vocabulary
Effective diction

UNIT - II: APPLIED GRAMMAR:
Correct usage
The structure of sentences
The structure of paragraphs
Enlargements of Vocabulary

UNIT - III: WRITTEN COMPOSITION:
Precise writing and summarizing Writing of bibliography
Enlargement of Vocabulary

UNIT - IV: READING AND COMPREHENSION:
Review of selected materials and express oneself in one's words. Enlargement of Vocabulary.

UNIT - V: THE STUDY OF THE VARIOUS FORMS OF COMPOSITION:
Paragraph, Essay, Letter, Summary, Practice in writing

UNIT - VI: VERBAL COMMUNICATION:
Discussions and summarization, Debates, Oral reports, use in teaching
Scheme of Examination
Written (Theory): Maximum Marks: –80 marks. No Practical or
Viva voce examination
This is a subsidiary subject, examination to be conducted by respective colleges. Marks required for a pass is 35%

REFERENCE

2. Wren and Martin - Grammar and Composition, 1989, Chanda & Co, Delhi
5. Journalism Made Simple D Wainwright
6. Writers Basic Bookself Series, Writers Digest series
7. Interviewing by Joan Clayton Platkon

HEALTH CARE

Teaching Hours : 40

Introduction to Health

Definition of Health, Determinants of Health, Health Indicators of India, Health Team Concept. National Health Policy

National Health Programmes (Briefly Objectives and scope) Population of India and Family welfare programme in India

Introduction to Nursing

What is Nursing ? Nursing principles. Inter-Personnel relationships. Bandaging : Basic turns; Bandaging extremities; Triangular Bandages and their application.

Nursing Position, Bed making, prone, lateral, dorsal, dorsal re-cumbent, Fowler's positions, comfort measures, Aids and rest and sleep.

Lifting And Transporting Patients: Lifting patients up in the bed. Transferring from bed to wheel chair. Transferring from bed to stretcher.

Bed Side Management: Giving and taking Bed pan, Urinal : Observation of stools, urine.
Observation of sputum, Understand use and care of catheters, enema giving. Methods Of Giving Nourishment: Feeding, Tube feeding, drips, transfusion Care of Rubber Goods

Recording of body temperature, respiration and pulse, Simple aseptic technique, sterilization and disinfection. Surgical Dressing: Observation of dressing procedures

First Aid:

Syllabus as for Certificate Course of Red Cross Society of St. John's Ambulance Brigade.

Reference Books:

Preventive and Social Medicine by J.Park

Text Book of P & SM by Park and Park

Counseling & Communicate skills for medical and health, Bayne- Orient Longman Pvt. Ltd.

Scheme of Examination

No Practical or Viva voce examination

This is a subsidiary subject, examination to be conducted by respective colleges. Marks required for a pass is 35%
APPLIED PHARMACOLOGY

• General concepts about pharmacodynamic and Pharmacokinetic Principles involved in drug activity.

Autonomic nerves system.
Anatomy & functional organisation.
• List of drugs acting an ANS including dose, route of administration, indications, contraindications and adverse effects.

II. Cardiovascular drugs - Enumerate the mode of action, side effects and therapeutic uses of the following drugs.

Antihypertensive
Beta Adrenergic antagonists
Alpha Adrenergic antagonists
Peripheral Vasodilators
Calcium channel blockers
Antiarrhythmic drugs
Cardiac glycosides
Sympathetic and non-sympathetic inotropic agents.
Coronary vasodilators.
Antianginal and anti failure agents
Lipid lowering & anti atherosclerotic drugs.
Drugs used in Haemostasis - anticoagulants Thrombolytics and antithrombolytics.
Cardioplegic drugs - History, Principles and types of cardioplegia.
Primary solutions - History, principles & types.
Drugs used in the treatment of shock.

III. Anaesthetic agents.
• Definition of general and local anaesthetics.
• Classification of general anaesthetics.
• Pharmacokinetics and Pharmacodynamics of inhaled anaesthetic agents.
• Intravenous general anaesthetic agents.
• Local anaesthetics - classification mechanism of action, duration of action, and method to prolong the duration of action. Preparation, dose and routes of administration.
IV. Analgesics
• Definition and classification
• Routes of administration, dose, frequency of administration, Side effects and management of non opioid and opioid analgesics

V. Antihistamines and antiemetics-
• Classification, Mechanism of action, adverse effects, Preparations, dose and routes and administration.

VI. CNS stimulants and depressants
• Alcohol
• Sedatives, hypnotics and narcotics
• CNS stimulants
• Neuromuscular blocking agents and muscle relaxants.

VII. Pharmacological protection of organs during CPB

VIII. Inhalational gases and emergency drugs.

IX. Pharmacotherapy of respiratory disorders
• Introduction - Modulators of bronchial smooth muscle tone and pulmonary vascular smooth muscle tone

• Pharmacotherapy of bronchial asthma
• Pharmacotherapy of cough
• Mucokinetic and mucolytic agents
• Use of bland aerosols in respiratory care.

X. Corticosteroids - Classification, mechanism of action, adverse effects and complications.
 Preparation, dose and routes of administration.

XI Diuretics
• Renal physiology
• Side of action of diuretics
• Adverse effects
• Preparations, dose and routes of administration.

XII. Chemotherapy of infections
• Definition
• Classification and mechanism of action of antimicrobial agents
• Combination of antimicrobial agents
• Chemoperophylaxis.
• Classification, spectrum of activity, dose, routes of administration, and adverse effects of penicillin, cephalosporins, aminoglycosides, tetracyclines, chloramphenicol, antitubercular drugs.

XIII. Miscellaneous.
IV fluids - various preparations and their usage.
Electrolyte supplements
Immunosuppressive agents
New drugs included in perfusion technology.
Drugs used in metabolic and electrolyte imbalance.

PRACTICALS:

Preparation and prescription of drugs of relevance.
2. Experimental pharmacology directed to show the effects of commonly used drugs of relevance and interpretation of few charts.

Scheme of Examination Theory

There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for APPLIED ANATOMY & PHYSIOLOGY RELATED TO DIALYSIS TECHNOLOGY PAPER 1 shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 & 10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (No choice) 10x3= 30 marks

Total= 100

NO PRACTICAL EXAMINATION
Recommended Books.

4. Experimental Pharmacology for Under Graduates, Prabarker, , Orient Longman PVT Ltd.

APPLIED PATHOLOGY

CARDIOVASCULAR SYSTEM

• Atherosclerosis- Definition, risk factors, briefly Pathogenesis & morphology, clinical significance and prevention.

• Hypertension- Definition, types and briefly Pathogenesis and effects of Hypertension.

Aneurysms - Definition, classification, Pathology and complications.

Pathophysiology of Heart failure.

• Cardiac hypertrophy - causes, Pathophysiology & Progression to Heart Failure.

• Ischaemic heart diseases- Definition, Types. Briefly Pathophysiology, Pathology & Complications of various types of IHD.

• Valvular Heart diseases- causes, Pathology & complication. Complications of artificial valves.

• Cardiomyopathy - Definition, Types, causes and significance.

• Pericardial effusion- causes, effects and diagnosis.
• Congenital heart diseases - Basic defect and effects of important types of congenital heart diseases.

II. HAEMATOLOGY

• Anaemia - Definition, morphological types and diagnosis of anaemia. Brief concept about Haemolytic anaemia and polycythaemia.

• Leukocyte disorders- Briefly leukaemia, leukocytosis, agranulocytosis etc.,

• Bleeding disorders- Definition, classification, causes & effects of important types of bleeding disorders. Briefly various laboratory tests used to diagnose bleeding disorders.

III. RESPIRATORY SYSTEM

• Chronic obstructive airway diseases - Definition and types. Briefly causes, Pathology and complications of each type of COPD.

• Briefly concept about obstructive versus restrictive pulmonary disease.

• Pneumoconiosis- Definition, types, Pathology and effects in brief.

• Pulmonary congestion and oedema.

• Pleural effusion - causes, effects and diagnosis.

IV. RENAL SYSTEM

• Clinical manifestations of renal diseases. Briefly causes, mechanism, effects and laboratory diagnosis of ARF& CRS. Briefly Glomerulonephritis and Pyelonephritis.

• Endstagerenal disease- Definition, causes, effects and role of dialysis and renal transplantation in its management.

• Brief concept about obstructive uropathy.

PRACTICALS

1. Description & diagnosis of the following gross specimens.

A. Atherosclerosis.

B. Aortic aneurysm.

c. Myocardial infraction.

d. Emphysema
2. Interpretation & diagnosis of the following charts.
 a. hematology Chart - AML, CML, Hemophilia, neutrophilia, eosinophilia.
 b. Urine Chart - ARF, CRF, Acute glomerulonephritis.

 Estimation Bleeding & Clottingtime.

Scheme of Examination Theory

There shall be one theory paper with 2 section of three hours duration carrying 50 marks each. Distribution of type of questions and marks for Applied Pathology shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 50 MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 1 Questions (No choice) 1x10= 10 marks
2. Short essay- 05 Questions (Choice is in Questions no 3) 05x5= 25 marks
3. Short answer- 05 Questions (Choice is in Questions no 3) 05x3= 15 marks

Total= 50
There will be a Combined Practical examination for Applied Pathology & Applied Microbiology.

<table>
<thead>
<tr>
<th>Hematology Chart</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Interpretation of Urine Chart</td>
</tr>
<tr>
<td>3</td>
<td>Estimation of Hemoglobin</td>
</tr>
<tr>
<td>4</td>
<td>Estimation of Bleeding time & Clotting time</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
</tr>
</tbody>
</table>
1. Health care associated infections and Antimicrobial resistance: Infections that patients acquire during the course of receiving treatment for other conditions within a healthcare setting like Methicillin Resistant Staphylococcus aureus infections, Infections caused by Clostridium difficile, Vancomycin resistant enterococci etc. Catheter related blood stream infections, Ventilator associated pneumonia, Catheter Related urinary tract infections, Surveillance of emerging resistance and changing flora. The impact and cost attributed to Hospital Associated infection. 6 Hours

2. Disease communicable to Healthcare workers in hospital set up and its preventive measure: Occupationally acquired infections in healthcare professionals by respiratory route (tuberculosis, varicella- zoster, respiratory synctial virus etc), blood borne transmission (HIV, Hepatitis B, Hepatitis C, Cytomegalovirus, Ebola virus etc), oro faecal route (Salmonella, Hepatitis A etc), direct contact (Herpes Simplex Virus etc). Preventive measures to combat the spread of these infections by monitoring and control 6 Hours

3. Microbiological surveillance and sampling: Required to determine the frequency of potential bacterial pathogens including Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis and also to assess the antimicrobial resistance. Sampling: rinse technique, direct surface agar plating technique. 6 Hours

Importance of sterilization:

a. Disinfection of instruments used in patient care: Classification, different methods, advantages and disadvantages of the various methods.

b. Disinfection of the patient care unit

Infection control measures for ICU's 10 Hours

Sterilization:

a. Rooms: Gaseous sterilization, one atmosphere uniform glow discharge plasma (OAUGDP).

b. Equipments: classification of the instruments and appropriate methods of sterilization.

c. Central supply department: the four areas and the floor plan for instrument cleaning, high-level disinfecting and sterilizing areas 8 Hours
7. Preparation of materials for autoclaving: Packing of different types of materials, loading, holding time and unloading.

4 Hours

PRACTICALS - 30 HOURS

Principles of autoclaving & quality control of Sterilization.

2. Collection of specimen from outpatient units, inpatient units, minor operation theater and major operation theater for sterility testing.
 The various methods employed for sterility testing.
 Interpretation of results of sterility testing.
 Disinfection of wards, OT and Laboratory.

Scheme of Examination Theory

There shall be one theory paper with 2 section of three hours duration carrying 50 marks each Distribution of type of questions and marks for Applied Microbiology shall be as given under

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 50 MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay - 1 Questions (No choice) 1x10= 10 marks
2. Short essay- 05 Questions (Choice is in Questions no 3) 05x5= 25 marks
3. Short answer- 05 Questions (Choice is in Questions no 3) 05x3= 15 marks

Total= 50
PRACTICAL EXAMINATION

There will be a Combined Practical examination for Applied Pathology & Applied Microbiology.

<table>
<thead>
<tr>
<th>SL NO</th>
<th>TEST MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dry heat / Moist heat: Temperature recording charts interpretation</td>
</tr>
<tr>
<td>2</td>
<td>Dry heat / Moist heat: Colour change indicators interpretation Air sampling culture plates interpretation of Colony forming</td>
</tr>
<tr>
<td>3</td>
<td>units based on air flow rate and sampling time Interpretation of Sterility of Hemodialysis water</td>
</tr>
<tr>
<td>4</td>
<td>Distilled water /Deionised water based on growth of colonies in BHI agar to be reported as X CFU/mL</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Scheme of examination theory

There shall be one theory paper of three hours duration carrying 50 marks. Distribution of type of questions and marks for applied aspects of pathology & microbiology

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 50 MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay - 1 Questions (No choice) 1x10= 10 marks
2. Short essay- 05 Questions (Choice is in Questions no 3) 05x5= 25 marks
3. Short answer- 05 Questions (Choice is in Questions no 3) 05x3= 15 marks

Total= 50

Practical exam: 80 marks
MEDICINE RELEVANT TO CARDIAC CARE TECHNOLOGY

Cardiovascular System

Ischemic heart diseases Rheumatic heart disease Congenital heart disease Hypertension Aortic Aneurysms Cardiomyopathy Peripheral vascular disease Pulmonary oedema and LV failure

Hematology

Anaemia
Bleeding disorders
Laboratory tests used to diagnose bleeding disorders (in brief)

Respiratory System

Chronic obstructive airway diseases (COPD) Concept of obstructive versus restrictive pulmonary disease PFT and its interpretation

Renal System

ARF & CRF
End stage renal disease
Role of dialysis and renal transplantation in its management

CNS

Automatic nervous system
(Sympathetic & Parasympathetic system)
Brief mention of CNS disorders & their etiology

Others

DM
Obesity Pregnancy
Paediatric Patient (neonate/Infant)
Elderly patient

Scheme of Examination Theory

There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Medicine relevant to Cardiac Care Technology shall be as given under.
<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice)
 2x10 = 20 marks
2. Short essay - 10 Questions (Questions no 5 & 10 choice)
 10x5 = 50 marks
3. Short answer - 10 Questions (No choice)
 10x3 = 30 marks

Total = 100

NO PRACTICAL EXAMINATION

INTRODUCTION TO CARDIAC CARE TECHNOLOGY

Electrocardiography (ECG)

Basic Principles
a. The Electrocardiographic paper
b. The electrocardiograph
c. The Electrical field of Heart

The leads: Standard limb, Precordial lead, 'V' leads & 'AV' lead Basic ECG deflections

Basic action of electrocardiograph

Normal ECG

The 'P' wave the 'qrs'complex

The genesis of 'qrs' complex T wave; the S-T segment The 'U' wave

Rate & rhythm The Q-T interval

The Electrical axis

Precordial pattern of ECG

5. Chamber enlargement - atrial enlargement, LV hypertrophy & RV hypertrophy
6. Bundle branch block General principles Right

Bundle branch block Left bundle branch block The

Hemi blocks (Fascicular block)

AV Blocks-basics

Exercise stress Testing

Exercise

Exercise protocols

Electrocardiography measurements

Exercise testing - Indication and techniques

III. Echocardiography

1. Principles of Echocardiography
 • Basic principles of ultrasound
 • M-Mode of Echocardiography
 • Two dimensional Echocardiography
 • Doppler Echocardiography; colour flow
 • Transoesophageal Echocardiography

2. Instrumentation
 • Basic pulse Echo system
 • Transducers
 • Pulse generation
 • Echo detection
 • A mode, B-Mode, M-Mode
3. Echocardiographic Examination

- Selecting transducers
- Position of the patient
- Placement of the transducer
- Setting control
- M-Mode labelling
- 2 D Echo
- Normal variants
- Terminology
- Identification of segments

4. Doppler Echocardiography

Introduction to Doppler colour Echocardiography The Doppler principles Doppler ultrasound techniques Colour Doppler flow imaging Clinical application of Doppler Echocardiograph

a. Physical principles & instrumentation in spectral & colour Doppler flow imaging

b. Physical principles and Doppler effect. The Doppler Echocardiography system display

c. Blood flow pattern - Laminar & non-laminar flow

d. Doppler Echo cardiograph modes

- Continuous wave Doppler system
- Pulsed Doppler system
- High pulse repetition frequency
- Problems of colour imaging
5. Contrast Echo
6. Echo measurements of chambers -’ASE’ recommendation

IV. Cathlab
1. Basics:- Machine, Radiation
2. Generation of X-Ray
3. Hazards of radiation

REFERENCE
Feigenbaum’s Echocardiography- Latest edition
The Echo Manual- From the Mayo clinic- Latest edition
Leo Schamroth- An Introduction to Electrocardiography
Marriott’s practical Electrocardiography
5. Gross man & Baims cardiac catheterization, Angiography and Intervention

SCHEME OF EXAMINATION HEORY
There shall be one theory paper of three hours duration carrying 100 marks.
Distribution of type of questions and marks for Introduction to Cardiac Care Technology shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>
1. Long essay - 2 Questions (second question choice)
 2x10 = 20 marks
2. Short essay - 10 Questions (Questions no 5 & 10 choice)
 10x5 = 50 marks
3. Short answer - 10 Questions (No choice)
 10x3 = 30 marks

Total = 100

PRACTICAL EXAMINATION
- Basic knowledge about ultrasound machine, cathlab machine
- Basics views in echocardiography
- Interpretation of ECG / TMT reports

Subsidiary Subject:

SOCIOLOGY

Teaching Hours: 20 Course
Description:

This course will introduce student to the basic sociology concepts, principles and social process, social institutions [in relation to the individual, family and community and the various social factors affecting the family in rural and urban communities in India will be studied.

Introduction

Meaning - Definition and scope of sociology Its relation to Anthropology, Psychology, Social Psychology Methods of Sociological investigations - Case study, social survey, questionnaire, interview and opinion poll methods. Importance of its study with special reference to healthcare professionals Social Factors in Health and Disease: Meaning of social factors Role of social factors in health and disease

Socialization:

Meaning and nature of socialization
Primary, Secondary and Anticipatory socialization Agencies of socialization Social Groups:

Concepts of social groups, influence of mal and informal groups on health and sickness. The role of primary group sand secondary groups in the hospital and rehabilitation setup.
Family:

The family, meaning and definitions. Function of family. Changing family patterns. Influence of family on individual's health, family and nutrition, the effects of sickness in the family and psychosomatic disease and their importance to physiotherapy.

Community:

Rural community: Meaning and features. Health hazards to rural communities, health hazards to tribal community.

Urban community: Meaning and features. Health hazards to urban communities.

Health:

Disorders:

Social Change:

Social Security:

Social Security and social legislation in relation to the disabled.

Social Work:

Meaning of Social Work. The role of a Medical Social Worker.

INDIAN CONSTITUTION

Prescribed for the First Year students of all degree classes Unit-I: Meaning of the team 'Constitution' making of the Indian Constitution 1946-1940.

Unit-II: The democratic institutions created by the constitution. Bicameral system of Legislature at the Centre and in the States.

Unit-III: Fundamental Rights and Duties. Their content and significance.

Unit-V: Special Rights created in the Constitution for: Dalits, Back wards, Women and Children and the Religious and Linguistic Minorities.

Unit-VI: Doctrine of Separation of Powers legislative, Executive and Judicial and their functioning in India.
Unit IX: Enforcing rights through Writs:
Unit X: Constitution and Sustainable Development in India.

Books:

ENVIRONMENT SCIENCE & HEALTH

Introduction to Environment and Health
Sources, health hazards and control of environmental pollution Water
The concept of safe and wholesome water. The requirements of sanitary sources of water. Understanding the methods of purification of water on small scale and large scale. Various biological standards, including WHO guidelines for third world countries. Concept and methods for assessing quality of water.
Domestic refuse, sullage, human excreta and sewage their effects on environment and health, methods and issues related to their disposal.
Awareness of standard so of housing and the effect of poor housing on health. Role of arthropods in the causation of diseases, mode of transmission of arthropods borne diseases, methods of control

Recommended Books

REFERENCES:
Environment Science & Health

2. English Kannada Encyclopedia Dictionary, Orient Longman PVT Ltd.

Course Contents Third Year Main Subjects
Paper- I Cardiac Care Technology - Clinical

1. Echo in rheumatic heart disease-Echo in mitral stenosis, mitral incompetence, aortic stenosis, aortic incompetence, Tricuspid valve diseases, pulmonary hypertension. Post AVR, post MVR, Prosthetic valve malfunction, LA/LAA clot
2. Echo in congenital heart disease-Echo in ASD, VSD, PDA, pulmonary stenosis, aortic stenosis, contraction of aorta, TOF, Dextrocardia.
3. Echo in ischemic heart disease-Echo in acute myocardial infarction, old myocardial infarction and other ischemic heart disease related conditions, LV aneurysm, VSR, Ischemic MR
4. Echo in other vascular disease- Echo in various types of cardio myopathy infective endocarditis, diseases of aorta, mitral valve prolapse, my xoma and other cardio vascular diseases.

5. Assessment of Cardiac Function- measurement of all cardiac chambers and assessment of cardiac function (Diastolic, Systolic)

6. Echo in pericardial disease- pericardial effusion, cardiac tamponade, constructive pericarditis

7. Cardiac catheterization laboratory- general details of cardiac catheterization equipment, how to handle the machine, common problems one may come across and how to overcome it, radiation hazards

8. Radiation physics- basics, generation of radiations, effects on patients/staffs

9. Materials used in the cathlab- all catheters, balloons, guidewires, pacemakers contrast material and other material used in the cardiac catheterization laboratory and sterilization of all these materials

10. Right heart catheterization- procedure, cath position, oxymetry at various levels, angiogram done and its interpretation

11. Left heart catheterization - procedure, cath position, oxymetry at various levels, angiogram done and its interpretation

12. Coronary angiogram- procedure, materials used, type and amount of dye used, indications and contraindications, various pictures recorded in various angles and gross interpretation.

Peripheral angiogram- procedure, indication and contraindication

REFERENCE
1. Feigenbaum’s Echocardiography- Latest edition
2. The Echo Manual- From the Mayo Clinic- Latest edition
3. Leo Schamroth- An Introduction to Electrocardiography
4. Marriott’s practical Electrocardiography
5. Grossman & Baim’s cardiac catheterization, Angiography and Intervention
Scheme of examination theory

There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for applied dialysis technology paper shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 & 10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (No choice) 10x3= 30 marks

Total= 100

Practical exam: 80 marks

One common practical for all the papers with equal weightage of marksi.e.40practical marks for each paper.

Paper - II Cardiac Care Technology - Applied

Interpretation of normal ECG
1. ECG in myocardial infarction- definition of myocardial infarction, diagnosis of myocardial infarction, ECG criteria for myocardial infarction, ECG in anterior wall, inferior wall, true posterior wall and sub endocardial infarction and RV infarction
2. ECG in rheumatic heart disease-definition of rheumatic heart disease, valvular involvement in rheumatic heart disease, ECG in mitral stenosis, mitral incompetence, aortic stenosis and aortic incompetence
3. ECG in hypertension-definition of hypertension, how to record blood pressure, ECG in hypertension
4. ECG in congenital heart disease- common congenital heart disease ASD, VSD, PDA, pulmonary stenosis, aortic stenosis, coarctation of aorta, TOF, definition of all these conditions, ECG changes in all these conditions
5. ECG in other conditions- ECG in various types of cardiomyopathy, myxoedema, pericardial effusion, acute pericarditis and other vascular diseases, Bundle branch block, WPW syndrome, dextrocardia
6. Trans esophageal echocardiogram - indications, procedure, usefulness and complications one may encounter and its management
 Stress Echo - procedure and indications
 Foetal echocardiogram - Procedure, interpretation
 Contrast echocardiogram - procedure and usefulness of contrast echocardiogram
 Myocardial contrast echo - Basic knowledge

7. Peripheral Doppler - Procedure and usefulness of peripheral Doppler

8. Coronary angioplasty - procedure, materials used, complications one may encounter and how to manage it
 Peripheral angioplasty - materials used and procedure. Angioplasty of coarctation of aorta

9. Rota ablation/FFR/IVUS/OCT - Basic knowledge

10. IABP - Uses, basic principle, indication, contraindication, complications

REFERENCE
1. Feigenbaum’s Echocardiography - Latest edition
2. The Echo Manual - From the Mayo Clinic - Latest edition
3. Leo Schamroth - An Introduction to Electrocardiography
4. Marriott’s practical Electrocardiography
5. Grossman & Baim’s Cardiac Catheterization, Angiography and Intervention

Scheme of examination theory

There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for applied dialysis technology paper is as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice)
 2x10 = 20 marks

2. Short essay - 10 Questions (Questions no 5 & 10 choice)
 10x5 = 50 marks

3. Short answer - 10 Questions (No choice)
 10x3 = 30 marks
 Total= 100
Practical exam: 80 marks

One common practical for all the papers with equal weightage of marks i.e. 40 practical marks for each paper.

Paper -III Cardiac Care Technology - Advanced

1. Cardiac Monitoring - definition, purpose of cardiac monitoring, how to Recognise various arrhythmias how to set up a intensive coronary care unit and usefulness of ICCU

2. Interpretation of TMT report - criteria for TMT positive test contraindication for TMT conditions where TMT is not useful, complications that may occur in TMT room and its management

3. Use of defibrillator- indications, how to use the defibrillator, complications during the procedure and its management

 Management of cardiac arrest - definition, causes external cardiac massage, artificial respiration and other drugs and procedures used in the management of Cardiac arrest(ACLS, BLS) Myocardial perfusion scan - procedures and usefulness of myocardial perfusion scan

Cardiac arrhythmias - bradyarrhythmia and tachy arrhythmias and ECG diagnosis of all rhythm disturbances.

Electrolyte disturbances - ECG in hypokalemia, hyperkalemia etc.

Holter monitoring - procedure and usefulness

 Coil closure and device closure of PDA - procedure, indications and materials used for coil and device closure of PDA

5. Device closure of ASD - procedure, indications and materials used for device closure of ASD

 Device closure of VSD - procedure, indications and materials used for device closure of VSD
Electrophysiological studies - basic knowledge of EP studies mapping and ablation

6. Oxymetry - handling of the instrument and usefulness of the instrument, normal and abnormal values.

7. Pressure recording- handling of the instrument and pressures in various chambers, normal and abnormal values.

8. Temporary and permanent pacing - materials used, procedure, complications one may encounter and management. Implantable Cardioverter defibrillator device

 CD recording and storage- recording and storage of all the procedures over CD

 Procedure during pregnancy- precautions to be followed.

 Cardiac drugs

 Septal ablation therapy- indication, procedure, complications

 Advanced echo- 3D, Speckle tracking- Basic knowledge

REFERENCE

Feigenbaum’s Echocardiography- Latest edition

1. The Echo Manual- From the Mayoclinic- Latest edition

2. practical Electrocardiography

3. Gross man & Baims cardiac catheterization, Angiography and Intervention

Scheme of Examination
THEORY

There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Paper -III Cardiac Care Technology - Advanced shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) \(2 \times 10 = 20 \text{ marks}\)
2. Short essay- 10 Questions (Questions no 5 &10 choice) \(10 \times 5 = 50 \text{ marks}\)
3. Short answer- 10 Questions (No choice) \(10 \times 3 = 30 \text{ marks}\)
Total= 100

One common practical for all papers with equal weight age of marks. 40 practical marks for each paper.

PRACTICAL EXAMINATION

40 Marks each paper

ECHO evaluation of Case with complete diagnosis Spotters

Interpretation of ECG/ TMT reports
Subsidiary subjects

BIO STATISTICS
Time Allotted: 20 Hours

Course Description:

Introduction to basic statistical concepts: methods of statistical analysis; and interpretation of data

Behavioural Objectives:

Understands statistical terms.
Possesses knowledge and skill in the use of basic statistical and research methodology.

Unit - I: Introduction
Meaning, definition, characteristics of statistics. Importance of the study of statistics.
Branches of statistics.
Statistics and health science including nursing. Parameters and estimates.
Descriptive and inferential statistics. Variables and their types.
Measurement scales

Unit - II: Tabulation of Data
Raw data, the array, frequency distribution. Basic principles of graphical representation.
Types of diagrams - histograms, frequency polygons, smooth frequency polygon, cumulative frequency curve, ogive. Normal probability curve.

Unit - III: Measure of Central Tendency
Need for measures of central tendenc0
Definition and calculation of mean - ungrouped and grouped
Meaning, interpretation and calculation of median ungrouped and grouped. Meaning and calculation of mode.
Comparison of the mean, and mode.
Guidelines for the use of various measures of central tendency.

Unit - IV: Measure of Variability
Need for measure of dispression. The range, the average deviation. The variance and standard deviation.
Calculation of variance and standard deviation ungrouped and grouped. Properties and uses of
Unit - V : Probability and Standard Distributions.
Meaning of probability of standard distribution. The Binominal
distribution.
The normal distribution.
Divergence from normality - skewness, kurtosis.

Unit - VI : Sampling Techniques
Need for sampling - Criteria for good samples. Application of
sampling in Community.
Procedures of sampling and sampling designs errors. Sampling variation
and tests of significance.

Unit - VII : Health Indicator
Importance of health Indicator.
Indicators of population, morbidity, mortality, health services. Calculation of
rates and rations of health.

Recommended Books.
B.K. Mahajan & M. Gupta (1995) Text Book of Preventive & Social Medicine, 2002,

BASICS IN COMPUTER APPLICATIONS

The course enables the students to understand the fundamentals of computer and its
applications.

Introduction to Data processing :
Features of computers, Advantages of using computers. Getting data into / out of computers.
Role of computers. What is Data processing? Application areas of computers involved in Data
processing. Common activities in processing. Types of Data processing, Characteristics of
information. What are Hardware and Software?

Hardware Concepts :
Architecture of computers, Classification of computers, Concept of damage. Types of storage
devices. Characteristics of disks, tapes, Terminals, Printers, Network. Applications of
networking concept of PC System care, Floppy care, Data care.

Concept of Software.
Classification of software: System software. Application of software. Operating system.

Computers in medical electronics Basic Anatomy of Computers Principles of programming

Computer application - principles in scientific research; work processing, medicine, libraries, museum, education, information system. Data processing

Computers in physical therapy - principles in EMG, Exercise testing equipment, Laser.

Scheme of Examination for MEDICAL ELECTRONICS including COMPUTER APPLICATIONS One Written (Theory) paper: Maximum Marks: -80 marks. No Practical or Viva voce examination
CLINICAL TRAINING

Content and purpose

The clinical component has been designed to complement the academic program and runs throughout the course. The placement have to be designed so that the students will be able to observe the practical application of the academic course wherever possible. Content can be tailored to meet either National or Local needs as is deemed to be most appropriate.

1st year: Introduction to the Hospital Setting
The purpose of this phase is:

i. For the students to become familiar with some of the practical applications of the academic course
ii. To introduce the wider hospital setting
iii. To help the students to identify the various disciplines within a hospital, their role and the importance of cooperation.
iv. To introduce patients in a clinical setting and begin to acquire basic communication skills.

2nd year: Skills Necessary to work in a Hospital

To be completed very early in the training. The following procedures will be demonstrated to the students who will be expected to observe or participate as appropriate.

General procedures to be observed when patients attend for appointment:
• Lifting and moving techniques.
• Administration of bedpans, vomit bowls, etc.,
• Care and management of drugs in the hospital setting.

Correct procedures when dealing with patients with infectious diseases
• University precautions.

Correct procedures when dealing with immuno-compromised patients:
• Hygiene practices
• Simple dressings
• Sterile procedures
• Oxygen administration
Care of patients with:
Breathing difficulties
Terminal illness
Mental impairment
Physical disability
Special care of the geriatric and paediatric patient
Stoma care
Handling of patients with bone metastases
Care of the patient following an anaesthetic
Care of lines in the incubated patient
Communication skills with patients and relatives
Terminally ill and Hospice

2nd & 3rd year: Skills Related to working in a department
Introduction to the department. Time will be spent on each unit within the department. The purpose of this phase is to:

In the department:

i. Familiarize the students with the different units within the department and the procedures carried out on each unit.

ii. Enable the student to recognize and relate to the basic terminology introduced in the academic program.

iii. Help to establish a sense of identity within the student group and to understand the role of the Technology in the management of various cases.

Introduce the students to the staff of the department.

Help the student to understand team roles.

Familiarize the students with written QA programs within the department.

Equipment's and Integration:

Begin to become competent in the manipulation of the equipment.
Be able to communicate effectively with patients.
Begin to integrate into the department as part in specific and multidisciplinary teams.

iv. Begin to empathize with patients and to appreciate their own feelings in the clinical situation.

Being able to handle and achieve proficiency in mould room techniques.
Safety & Precautions in Practice:

Identifying the functions of various equipment and safe handling.

1. Identifying the functions on a control panel, indicating their purpose and safely using these when appropriate.
2. Safely using the accessory equipment in the correct context.
3. Correctly and safely using equipment related to patient immobilization.
4. Demonstrating the correct procedure for various techniques

To Achieve Clinical Competence

The purpose of this phase is for the students to:

i. Demonstrate competence in the manipulation of equipment.
ii. Demonstrate an ability to anticipate the physical and psychological needs of the patient and respond to them.
iii. Demonstrate the ability to communicate with ease with other staff involved in the multidisciplinary treatment of the patient.
iv. Increasingly participate as a team member in all aspects of the patient’s management.
v. Demonstrate competence in simulator procedures.
vi. Acquire basic computer skills.
vii. Participate in the development / revision of formal written quality assurance procedures / programme.
viii. Set up a patient on their first visit.

To achieve final competency substantial time will be spent:

i. Setting up multi field techniques under supervision.
ii. Participating in the quality control procedures in the department in accordance with the protocols.
iii. Simulating and localizing a target volume.
iv. Discussing the role of local rules and outline those in place in the different departments.

Graded Responsibility (structured training schedule)

I year: Theory classes, observation in treatment planning and treatment execution.
II year: Theory classes, participation in OPD, mould room techniques, treatment planning, treatment execution under the supervision of consultant, senior technologist, project work.
III year: Theory classes, participation in OPD, Treatment planning and execution under supervision of consultant & Senior Technologist. Submission of Project Work, Mould Room Techniques, Quality Assurance.
Rotation posting

Students may be posted to other relevant departments or other centres with better and latest equipment's for a minimum period of 1 to 2 months, for completion of training in recent advance in the specialty. The student on completion of the training shall submit a report duly signed by the concerned department to the HOD.

Monitoring Learning Progress

It is essential to monitor the learning progress of each candidate through continuous appraisal and regular assessment. It not only also helps teachers to evaluate students but also students to evaluate themselves. The monitoring be done by the staff of the department based on participation of students in various teaching / learning activities. It may be structured and assessment be done using sample checklist provided (Assessment forms).

The learning outcomes to be assessed should include:

- Personal Attitudes
- Acquisition of knowledge
- Clinical and operative skills
- Teaching skills

Candidate should be encouraged to participate in teaching activities, seminars and literature reviews.

Periodic tests :

The departments may conduct periodic tests (Internal Assessment), the tests may include written papers, practical with viva voce.

Work diary / Log, Personal Attitudes.

The essential items are:

- Caring attitudes
- Initiative
- Organizational ability
- Potential to cope with stressful situations and undertake responsibility
- Trust worthiness and reliability
- To understand and communicate intelligibly with patients and other
 - To behave in manner which establishes professional relationships with patients and colleagues
 - Ability to work in team
- A critical enquiring approach to the acquisition of knowledge the methods used mainly consist of observation. It is appreciated that these items require a degree subjective assessment by the guide, supervisors and peers.
Acquisition of Knowledge:

The methods used comprise of 'Log Book' which records participation in various teaching/learning activities by the students. The number of activities attended and the number in which presentations are made are to be recorded. The log book should periodically be validated by the supervisors, some of the activities are listed.

The list is not complete. Institutions may include additional activities, if so, desired.

1. Technical skills

Day to day work: Skills on the machines should be assessed periodically. The assessment should include the candidates' sincerity and punctuality, analytical ability and communication skills.

Clinical and procedural skills: The candidate should be given graded responsibility to enable learning by apprenticeship. The performance is assessed by the guide by direct observation. Particulars are recorded by the student in the log book.

2. Teaching Skills:

Book:
Every candidate shall maintain a work diary and record his/her participation in the training programs conducted by the department such as practical, literature reviews, seminars, etc. Special mention may be made of the presentations, by the candidate as well as details of practical or laboratory procedures, if any conducted by the candidate.

3. Records:

Records, log books, project report and marks obtained in tests will be maintained by the Head of the Department and will be made available to the University as indicated. The record books maintained by the student should be submitted to the Head of the Department 6 months prior to completion of the course and the head of the department makes a certification of the of the academic progress an assessment of student performance throughout the said course shall be made by the HOD.
The log book is a record of the important activities of the candidates during his training. Internal assessment should be based on the evaluation of the log book collectively. Log books are a tool for the evaluation of the training programme of the institution by external agencies. The record includes academic activities as well as the presentations and procedures carried out by the candidate.