Revised Ordinance Governing Regulations and Curriculum

of

B.Sc. NEUROSCIENCETECHNOLOGY

COURSE • 2019

Rajiv Gandhi University of Health Sciences,

Karnataka, Bangalore
The Emblem

The Emblem of the Rajiv Gandhi University of Health Sciences is a symbolic expression of the confluence of both Eastern and Western Health Sciences. A central wand with entwined snakes symbolises Greek and Roman Gods of Health called Hermis and Mercury is adapted as symbol of modern medical science. The pot above depicts Amrutha Kalasham of Dhanvanthri the father of all Health Sciences. The wings above it depicts Human Soul called Hamsa (Swan) in Indian philosophy. The rising Sun at the top symbolises knowledge and enlightenment. The two twigs of leaves in western philosophy symbolises Olive branches, which is an expression of Peace, Love and Harmony. In Hindu Philosophy it depicts the Vanaspathi (also called as Oushadi) held in the hands of Dhanvanthri, which are the source of all Medicines. The lamp at the bottom depicts human energy (kundalini). The script “Devahitham Yadayahu” inside the lamp is taken from Upanishath Shanthi Manthram (Bhadram Karnebh i Shrunuyanadev…), which says “May we live the full span of our lives allotted by God in perfect health” which is the motto of the Rajiv Gandhi University of Health Sciences.
NOTIFICATION

Ref: 1) Minutes of BOS Allied Health Sciences held on 13/05/2019
2) Proceedings of Faculty meeting held on 15/05/2019
3) Proceedings of AC meeting held on 17/06/2019
4) Proceedings of Syndicate meeting held on 29/06/2019

In exercise of the powers vested under Section 35(2) of RGUHS Act, 1994, the Revised Ordinance pertaining to Regulation and the curriculum of B.Sc. Neuro Science Technology is notified herewith as per Annexure.

The above Regulation shall be applicable to the students admitted to the said course from the academic year 2019-20 onwards.

By Order,

REGISTRAR

To

The Principals of all affiliated Allied Health Sciences Course colleges of RGUHS, Bangalore.

Copy to:
1. The Principal Secretary to Governor, Raj Bhavan, Bangalore - 560001
2. The Principal Secretary Medical Education, Health & Family Welfare Dept., M S Building, Dr.B.R. Ambedkar Veedhi, Bangalore - 01
3. PA to Vice – Chancellor/PA to Registrar/Registrar (Eva.)/Finance Officer, Rajiv Gandhi University Health Sciences, Bangalore
4. All Officers of the University Examination Branch/ Academic Section.
5. Guard File / Office copy.
1. Eligibility for admission:

A candidate seeking admission to the BSc. Neuro Science Technology shall have studied English as one of the principal subject during the tenure of the course and shall have passed:

1. Two year Pre-University examination or equivalent as recognized by Rajiv Gandhi University of Health Sciences with, Physics, Chemistry and Biology as subjects of study.

OR

2. Pre-Degree course from a recognized University considered as equivalent by RGUHS, (Two years after ten years of schooling) with Physics, Chemistry and Biology as subjects of study.

OR

3. Any equivalent examination recognized by the Rajiv Gandhi University of Health Sciences, Bangalore for the above purpose with Physics, Chemistry and Biology as subjects of study.

OR

4. The vocational higher secondary education course conducted by Vocational Higher Secondary Education, Government of Kerala with five subjects including Physics, Chemistry, Biology and English in addition to vocational subjects conducted is considered equivalent to plus TWO examinations of Government of Karnataka Pre University Course.
5. Candidates with two years diploma from a recognized Government Board in Neuro ScienceTechnology shall have passed class 12 [10+2] with Physics, Chemistry and Biology, as subjects or candidates with 3 years diploma from a recognized Government Board in Neuro ScienceTechnology should have studied Physics, Biology and Chemistry as subjects during the tenure of the course.

6. Lateral entry to second year of B.Sc.Neuro ScienceTechnology for candidates who have passed diploma program from the Government Boards and recognized by RGUHS, fulfilling the conditions specified above under Sl. No. 5 and these students are eligible to take admission on lateral entry system only in the same subject studied at diploma level from the academic year 2008-09 vide RGUHS Notification no. AUTH/AHS/317/2008-09 dated:01.08.2008.

Note:

a. The candidate shall have passed individually in each of the subjects.

b. Candidates who have completed diploma or vocational course through Correspondence shall not be eligible for any of the courses mentioned above.

2. Duration of the course:

Duration shall be for a period of four years including one year of Internship.

3. Medium of instruction:

The medium of instruction and examination shall be in English.

4. Scheme of examination:

There shall be three theory examinations one each at the end of 1st, 2nd and 3rd year.
5. Attendance

Every candidate should have attended at least 80% of the total number of classes conducted in an academic year from the date of commencement of the term to the last working day as notified by university in each of the subjects prescribed for that year separately in theory and practical. Only such candidates are eligible to appear for the university examinations in their first attempt. Special classes conducted for any purpose shall not be considered for the calculation of percentage of attendance for eligibility. A candidate lacking in prescribed percentage of attendance in any subjects either in theory or practical in the first appearance will not be eligible to appear for the University Examination in that subject.

6. Internal Assessment (IA):

1st Year B.Sc. NEUROSCIENCE TECHNOLOGY

Theory - 20 marks
Practicals - 10 marks*. [Lab work- 06 marks and Record-04 marks]

2nd & 3rd year B.Sc. NEUROSCIENCE TECHNOLOGY

Theory – 20 Marks
Practicals – 20 Marks

There shall be a minimum of two periodical tests preferably one in each term in theory and practical of each subject in an academic year. The average marks of the two tests will be calculated and reduced to 20. The marks of IA shall be communicated to the University at least 15 days before the commencement of the University examination. The University shall have access to the records of such periodical tests. The marks of the internal assessment must be displayed on the notice board of the respective colleges with in a fortnight from the date test is held. If a candidate is absent for any one of the tests due to genuine and satisfactory reasons, such a candidate may be given a re-test within a fortnight.

* There shall be no University Practical Examination in First year.
7. Subject and hours of teaching for Theory and Practicals

The number of hours of teaching theory and practical, subject wise in first year, second year and third year are shown in Table-I, Table-II and Table-III.

Main and Subsidiary subjects are common in first year for all the courses in Allied Health Science.

The number of hours for teaching theory and practical for main subjects in first, Second and Third year are shown in Table-I, II and III.

Table - I Distribution of Teaching Hours in First Year Subjects

Main subjects

<table>
<thead>
<tr>
<th>Sl. no</th>
<th>Subject</th>
<th>Theory No. of Hours</th>
<th>Practical No. of Hours</th>
<th>Total No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human Anatomy</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>Physiology</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Biochemistry I</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Pathology I (Clinical Pathology, Haematology & Blood Banking)</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Microbiology</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>350</td>
<td>100</td>
<td>450</td>
</tr>
</tbody>
</table>

The classes in main and subsidiary subjects are to be held from Monday to Thursday. On Fridays and Saturdays students shall work in hospitals in the respective specialty or department chosen by them.

Subsidiary Subjects

English 25 Hours

Kannada 25 Hours

Health-Care 40 Hours

Clinical/Lab posting –470 hours (Friday 9am – 1pm and 2pm - 4-30 pm

Saturday 9am - 1pm)
Table - II Distribution of Teaching Hours in Second Year Subjects

Main Subjects

<table>
<thead>
<tr>
<th>Sl. no</th>
<th>Subject</th>
<th>Theory No. of Hours</th>
<th>Practical No. of Hours</th>
<th>Clinical Postings</th>
<th>Total No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Electroencephalography</td>
<td>70</td>
<td>30 (15+15)</td>
<td>--</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Basics of Nerve Conduction Study (NCS)</td>
<td>70</td>
<td>30 (15+15)</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Applied Anatomy & Physiology Related to Neuroscience Technology</td>
<td>70</td>
<td>30 (15+15)</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Pharmacology related to Neuroscience technology</td>
<td>50</td>
<td>-</td>
<td>--</td>
<td>50</td>
</tr>
</tbody>
</table>

Subsidiary Subjects:

Medical Psychology
20 Hours

Table - III Distribution of Teaching Hours in Third Year Subjects

Main Subjects

<table>
<thead>
<tr>
<th>Sl. no</th>
<th>Subjects</th>
<th>Theory No of Hours</th>
<th>Practical No. of Hours</th>
<th>Clinical Posting</th>
<th>Total No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced Technique I</td>
<td>70</td>
<td>30</td>
<td>310</td>
<td>410</td>
</tr>
<tr>
<td>2</td>
<td>Advanced Technique II</td>
<td>70</td>
<td>30</td>
<td>310</td>
<td>410</td>
</tr>
<tr>
<td>3</td>
<td>Systemic Disease</td>
<td>50</td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Total
190
60
620
870
Subsidiary Subjects:

Research & Biostatistics 20 Hours

8. Schedule of Examination:

The university shall conduct two examinations annually at an interval of not less than 4 to 6 months as notified by the university from time to time. A candidate who satisfies the requirement of attendance, progress and conduct as stipulated by the university shall be eligible to appear for the university examination. Certificate to that effect shall be produced from the Head of the institution along with the application for examination and the prescribed fee.

9. Scheme of Examination

There shall be three examinations, one each at the end of I, II and III year. The examination for both main and subsidiary subjects for all courses in Allied Health Sciences shall be common in the first year. Distribution of Subjects and marks for First Year, Second year & Third year University theory and practical Examinations are shown in the Table – IV, V & VI.

First year examination:

The University examination for 1st year shall consist of only theory examination and there shall be no University Practical Examination.

Second & Third year examination:

The University examination for 2nd and 3rd year shall consist of Written Examination & Practical.

Written Examinations consists of

05 papers in the 1st year
03 papers in the 2nd Year
03 papers in the 3rd Year.

Practical examination:

Three practical examinations, at the end 2nd Year, three practical examinations at the end of the 3rd year and 1 practical exam at the end of 4th year.
TABLE-IV

Distribution of Subjects and marks for First Year University theory Examination
B.Sc. NEUROSCIENCE TECHNOLOGY

<table>
<thead>
<tr>
<th></th>
<th>Main Subjects*</th>
<th>Written Paper</th>
<th>I A Theory</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>Marks</td>
<td>Marks</td>
</tr>
<tr>
<td>1</td>
<td>Basic Anatomy (Including</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Histology)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Physiology</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Biochemistry</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Pathology</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Microbiology</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Subsidiary Subject**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>English</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Kannada</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Health Care</td>
<td>3 Hours</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: I A = Internal Assessment

*Main Subjects shall have University Examination.

There shall be no University Practical Examination.

**Subsidiary subjects: Examination for subsidiary subjects shall be conducted by respective colleges
TABLE – V

Distribution of Subjects and marks for Second Year Examination of B.Sc. NEUROSCIENCE TECHNOLOGY

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Theory</th>
<th>Practical</th>
<th>Theory</th>
<th>Practical</th>
<th>Theory</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Univ. exam</td>
<td>IA</td>
<td>Sub Total</td>
<td>Univ. Prac</td>
<td>IA</td>
<td>Sub Total</td>
</tr>
<tr>
<td>I</td>
<td>Basic Electroencephalography (EEG)</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>Basic Nerve Conduction Study (NCS)</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>(40+40)</td>
<td>(10+10)</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>Applied Anatomy & Physiology Related to Neuroscience</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>No Practical</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>IV</td>
<td>Pharmacology</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>No Practical</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Practical-One common practical for the two papers with equal weightage of marks i.e. 40 practical mark and 10 I.A. marks for each paper.
Distribution of Subsidiary Subjects and marks for Second Year Examination of B.Sc. NEUROSCIENCE TECHNOLOGY

<table>
<thead>
<tr>
<th>B</th>
<th>Subsidiary Subject**</th>
<th>Duration</th>
<th>Marks</th>
<th>I A Theory Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Medical Psychology</td>
<td>3 Hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

** Subsidiary subjects: Examination for subsidiary subjects shall be conducted by respective colleges

TABLE – VI

Distribution of Subjects and marks for Third Year Examination of B.Sc NEUROSCIENCE TECHNOLOGY

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Univ. exam</th>
<th>IA</th>
<th>Sub Total</th>
<th>Univ. Prac</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Advanced Technique 1</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>80</td>
<td>20</td>
<td>100</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(40 + 40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Advanced Technique 2</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Systemic Diseases</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>No practical</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
Distribution of Subsidiary Subjects and marks for Third Year Examination of
B.Sc. NEUROSCIENCE TECHNOLOGY

<table>
<thead>
<tr>
<th></th>
<th>Subsidiary Subject**</th>
<th>Duration</th>
<th>Marks</th>
<th>I A Theory Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Research & Biostatistics</td>
<td>3 Hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

** Subsidiary subjects: Examination for subsidiary subjects shall be conducted by respective colleges

10. Pass criteria

10.1. First year examination

a. Main Subjects: A candidate is declared to have passed in a subject, if he/she secures 50% of marks in University Theory exam and internal assessment added together.

b. Subsidiary Subjects: The minimum prescribed marks for a pass in subsidiary subject shall be 35% of the maximum marks prescribed for a subject. The marks obtained in the subsidiary subjects shall be communicated to the University before the Commencement of the University examination.

10.2. Second and Third year Examination

a. Main Subjects: A candidate is declared to have passed the examination in a subject if he/she secures 50% of the marks in Theory and 50% in practical separately. For a pass in theory, a candidate has to secure a minimum of 40% marks in the University conducted written examination, and 50% in aggregate in the University conducted written examination and internal assessment added together and for pass in Practical, a candidate has to secure a minimum of 40% marks in the university conducted Practical/Clinical examination and 50% in aggregate i.e. University conducted Practical/Clinical and Internal Assessment.

b. Subsidiary Subjects: The minimum prescribed marks for a pass in subsidiary subject shall be 35% of the maximum marks prescribed for a subject. The marks obtained in the subsidiary subjects shall be communicated to the University before the commencement of the University examination.
11. Carry over benefit

11.1 First year examination:

A candidate who fails in any two of the five main subjects of first year shall be permitted to carry over those subjects to second year. However, he/she must pass the carry over subjects before appearing for second year examination.

11.2. Second year examination:

A candidate is permitted to carry over any one main subject to the third year but shall pass this subject before appearing for the third year examination.

12. Declaration of Class

a. A candidate having appeared in all the subjects in the same examination and passed that examination in the first attempt and secures 75% of marks or more of grand total marks prescribed will be declared to have passed the examination with Distinction.

b. A candidate having appeared in all subjects in the same examination and passed that examination in the first attempt and secures 60% of marks or more but less than 75% of grand total marks prescribed will be declared to have passed the examination in First Class.

c. A candidate having appeared in all the subjects in the same examination and passed that examination in the first attempt and secures 50% of marks or more but less than 60% of grand total marks prescribed will be declared to have passed the examination in Second Class.

d. A candidate passing the university examination in more than one attempt shall be placed in Pass class irrespective of the percentage of marks secured by him/her in the examination.

e. The marks obtained by a candidate in the subsidiary subjects shall not be considered for award of Class or Rank.

[Please note, fraction of marks should not be rounded off clauses (a), (b) and (c)]
13. Eligibility for the award of Degree:

A candidate shall have passed in all the subjects of first, second and third year to be eligible for a compulsory 12 months of rotational internship, and completed one year of internship with pass criteria in outgoing clinical assessment exams.

9. Distribution of Type of Questions and Marks for Various Subjects

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for First year)</th>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
<td></td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice) \(2 \times 10 = 20 \text{ marks}\)
2. Short essay - 10 Questions (Questions no 5 & 10 choice) \(10 \times 5 = 50 \text{ marks}\)
3. Short answer - 10 Questions (Questions no 15 & 20 choice) \(10 \times 3 = 30 \text{ marks}\)

Total= 100

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 80 marks (subsidiary subjects)</th>
<th>Type of Questions</th>
<th>NO. of questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Essay Type</td>
<td>10 (8 x 5)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Short Answer Type</td>
<td>12 (10 x 3)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>To The Point Answer</td>
<td>07 (5 x 2)</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for Second and Third Year)</th>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
<td></td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice) \(2 \times 10 = 20 \text{ marks}\)
2. Short essay - 10 Questions (Questions no 5 & 10 choice) \(10 \times 5 = 50 \text{ marks}\)
3. Short answer - 10 Questions (No choice) \(10 \times 3 = 30 \text{ marks}\)

Total= 100
SUBJECTS HAVING MAXIMUM MARKS= 50

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 1 Questions (No choice) \(1 \times 10 = 10\) marks
2. Short essay- 05 Questions (Choice is in Question no 3) \(05 \times 5 = 25\) marks
3. Short answer- 10 Questions (Choice is in Question no 3) \(05 \times 3 = 15\) marks

Total= 50

INTERNSHIP

12 months compulsory rotational postings during which students have to work under the supervision of experienced staff.

1 practical university examination towards the end of internship
FIRST YEAR B.Sc. NEUROSCIENCE TECHNOLOGY

ANATOMY

Theory: 70hrs

Practical’s: 20hrs

Chapter 1
Introduction:
Theory:
• Definition of anatomy and its divisions
• Terms of location, positions and planes
• Epithelium-definition, classification, describe with examples, function
• Glands- classification, describe serous, mucous & mixed glands with examples
• Basic tissues – classification with examples

Practical:
• Histology of types of epithelium
• Histology of serous, mucous & mixed salivary gland

Chapter 2
Connective tissue:
Theory:
• Cartilage – types with example & histology theory
• Bone – Classification, names of bone cells, parts of long bone, microscopy of compact
• Bone, names of all bones, vertebral column, intervertebral disc, fontanelles of fetal skull
• Joints – Classification of joints with examples, synovial joint (in detail for radiology)
• Muscular system: Classification of muscular tissue & histology
• Names of muscles of the body

Practical:
• Histology of the 3 types of cartilage
• Histology of compact bone (TS & LS)
• Histology of skeletal (TS & LS) & cardiac muscle
• Demo of all bones showing parts, radiographs of normal bones & joints
• Demonstration of important muscles of the body

3. Cardiovascular system:
Theory:
• Heart-size, location, chambers, exterior & interior, pericardium
• Blood supply of heart
• Systemic & pulmonary circulation
• Branches of aorta, common carotid artery, subclavian artery, axillary artery, brachial artery, superficial palmar arch, femoral artery, internal iliac artery
• Inferior vena cava, portal vein, portosystemic anastomosis ,Great saphenous vein, Dural venous sinuses
• Lymphatic system- cisterna chyli & thoracic duct ,Histology of lymphatic tissues, Names of regional lymphatics, axillary and inguinal lymph nodes in brief

Practical:
• Demonstration of heart and vessels in the body
• Histology of large artery & vein, medium sized artery & vein
• Histology of lymph node, spleen, tonsil & thymus
• Radiology: Normal chest radiograph showing heart shadows

4. Gastro-intestinal system
Theory:
• Parts of GIT: Oral cavity (lip, tongue (with histology), tonsil, dentition, pharynx, salivary glands, Waldeyer’s ring), Oesophagus, stomach, small and large intestine, liver, gall bladder, pancreas, spleen, peritoneum & reflections

Practical:
• Demonstration of parts of GIT
• Radiographs of abdomen

5. Respiratory system
• Parts of RS: nose, nasal cavity, larynx, trachea, lungs, bronchopulmonary segments, diaphragm
• Histology of trachea, lung and pleura
• Names of paranasal air sinuses
Practical:
- Demonstration of parts of respiratory system.
- Normal radiographs of chest, X-ray paranasal sinuses
- Histology of lung and trachea

6. Urinary system
Theory:
- Kidney, ureter, urinary bladder, male and female urethra
- Histology of kidney, ureter and urinary bladder

Practical:
- Demonstration of parts of urinary system
- Histology of kidney, ureter, urinary bladder
- Radiographs of abdomen-IVP, retrograde cystogram

7. Reproductive system
Theory:
- Parts of male reproductive system, testis, vas deferens, epididymis, prostate (gross & histology)
- Parts of female reproductive system, uterus, fallopian tubes, ovary (gross & histology)
- Mammary gland – gross

Practical:
- Demonstration of section of male and female pelvis with organs in situ
- Histology of testis, vas deferens, epididymis, prostate, uterus, fallopian tubes, ovary
- Radiographs of pelvis – hysterosalpingogram

8. Endocrine glands
Theory:
- Names of all endocrine glands in detail on pituitary gland, thyroid gland & suprarenal gland – (gross & histology)

Practical:
- Demonstration of the glands
- Histology of pituitary, thyroid, parathyroid, suprarenal glands
9. **Nervous system**

Theory:
- Neuron & Classification of NS
- Cerebrum, cerebellum, midbrain, pons, medulla oblongata, spinal cord with spinal nerve
 (gross & histology) Meninges, Ventricles & cerebrospinal fluid, Names of basal nuclei
- Blood supply of brain
- Cranial nerves
- Sympathetic trunk & names of parasympathetic ganglia

Practical:
- Histology of peripheral nerve & optic nerve
- Demonstration of all plexuses and nerves in the body
- Demonstration of all part of brain
- Histology of cerebrum, cerebellum, spinal cord

10. **Sensory organs**

Theory:
- Skin: Skin-histology & Appendages of skin
- Eye: Parts of eye & lacrimal apparatus, Extra-ocular muscles & nerve supply
- Ear: parts of ear- external, middle and inner ear and contents

Practical:
- Histology of thin and thick skin
- Demonstration and histology of eyeball
- Histology of cornea & retina

11. **Embryology:**

Theory:
- Spermatogenesis & oogenesis
- Ovulation, fertilization
- Fetal circulation
- Placenta
INTERNAL ASSESSMENT

Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practical need not be sent to the university.

SCHEME OF EXAMINATION THEORY

There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Anatomy shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for First year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice) 10x3=30 marks
 Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practical</th>
<th>IA</th>
<th>Sub Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Grand total 120

REFERENCE BOOKS:
1. William Davis (P) understanding Human Anatomy and Physiology – McGraw Hill
2. Chaursia- A Text Book of Anatomy
3. T. S. Ranganathan- A Text Book of Human Anatomy
4. Fattana, Human Anatomy (Description and applied)- Saundar’s & C P Prism Publishers, Bangalore
5. ESTER. M. Grishcimer- Physiology & Anatomy with Practical Considerations, J. P. Lippin Cott. Philadelphia

PHYSIOLOGY

Theory 70 hours
Practical 20 hours

1. General Physiology
Introduction to cell physiology, transport across cell membrane
Homeostasis, Body Fluid compartment & measurement

2. Blood
Introduction - composition and function of blood
Plasma, proteins, types and functions
Red blood cells - erythropoiesis, stages of differentiation, factors affecting it, function, normal count, physiological variation.
Hemoglobin- function, concentration, types & methods of Hb estimation, fate of hemoglobin
Jaundice-types Anaemia, types
ESR, PCV, osmotic fragility & blood indices
WBC- morphology, production, functions, normal count, differential count, variation, variation Immunity (in brief)
Platelet- origin, morphology, normal count, function-Platelet plug ,bleeding disorder
Haemostasis - definition, normal haemostasis, clotting factors, mechanism of clotting, anticoagulants disorders of clotting factors.
Blood group-ABO & Rh system, Rh incompatibility blood typing ,cross matching, hazards of mismatched blood transfusion
RES, spleen and lymph

3. Nerve-Muscle
Neuron structure, types, neuroglia-types, nerve fibre classification, properties of nerve fibres,
RMP, action potential, wallerian degeneration
NMJ, blockers, Myasthenia gravis
Classification of muscle, structure of skeletal muscle, sarcomere, contractile proteins
Excitation contraction coupling, mechanism of muscle contraction, types of contraction
Motor unit, fatigue, rigor mortis Smooth muscle

4. Respiratory system
Physiological anatomy of respiratory system, muscles of respiration, respiratory & non respiratory functions of lungs, dead space
Mechanics of breathing, intrapulmonary & pleural pressures
Compliance, Surfactant, Hyaline membrane disease
Lung volumes and capacities
Respiratory membrane, transport of O₂ & CO₂
Chemical regulation of respiration
Neural regulation of respiration
Hypoxia, Acclimatization,
Dysbarism. Artificial respiration
Definition-Periodic breathing ,dyspnoea, apnoea, asphyxia,, cyanosis

5. Cardiovascular system
Introduction to CVS & general principles of circulation
Properties of Cardiac muscle
Cardiac cycle, heart sounds, Pulse
Cardiac output, factors and measurement
Heart rate
BP-factors, measurement, Short term regulation
Intermediate and long term regulation of BP
ECG uses and significance, ,normal waveform, heart block
Coronary circulation, Cutaneous circulation-Triple response
Shock
Effects of exercise on CVS and Respiratory system

6. Renal system, Skin and body temperature
Kidneys- functions, structure of nephron, type, juxtaglomerular apparatus-structure and function, non-excretory functions of kidney
Glomerular filtration rate (GFR)- Definition ,normal value, factors affecting GFR
Tubular reabsorption - sites, substance reabsorbed, mechanisms of reabsorption
Tubular secretion- sites, substance secreted, mechanisms of reabsorption
Counter current mechanism of concentration of urine
Obligatory and Facultative reabsorption of water
Micturition reflex, Diuretics
Artificial kidney, renal function tests-clearance tests
Skin -structure and function, body temperature measurement, physiological variation,
Regulation of body Temperature by physical, chemical and nervous mechanisms-Role of Hypothalamus
Hypothermia and fever

7. Digestive system
Physiological anatomy, Enteric nervous system & functions of GIT
Saliva- composition, regulation,disorder.
Deglutition- stages & disorders
Stomach-functions, composition and regulation of gastric juice
Gastric motility, MMC, vomiting reflex.
Pancreas- function, composition and regulation of pancreatic juice
Liver & gall bladder-functions, bile- composition, secretion and regulation
Small intestine- Succus entericus-composition, functions & movements
Large intestine- functions, movements and defecation reflex
Digestion & absorption of Carbohydrates, fats and proteins
8. Endocrine system
Classification of Endocrine glands & their hormones & properties-chemistry and receptor, feedback mechanisms of hormone regulation.
Anterior pituitary hormones- secretion, functions, disorders
Posterior pituitary hormones- secretion, functions, disorders
Thyroid hormones- secretion, functions, disorders
Parathyroid hormones- secretion, functions, disorders
Calcium homeostasis & disorders
Pancreatic hormones-, Insulin and Glucagon-. secretion, functions, disorders
Adrenal cortex- Glucocorticoids & Mineralcorticoids, Androgen - secretion, functions, disorders
Adrenal medulla- secretion, functions, disorders
Thymus & Pineal gland

9. Reproductive system
Introduction to reproductive system, sex differentiation & Puberty
Male reproductive system, functions of testosterone & Spermatogenesis
Female reproductive system, functions of Estrogen, Progesterone, Oogenesis
Ovulation & Menstrual cycle
Physiological changes during pregnancy, pregnancy tests, parturition & lactation
Male & Female contraceptive methods

10. Central nervous system
Introduction to CNS, Sensory receptors classification, properties
Synapse- classification, properties
Sensory pathways: Anterior spino thalamic tract and Posterior column pathway
Lateral spino thalamic tract, Types of pain, Referred pain, Thalamus; nuclei and function
Classification of reflexes, Monosynaptic reflex- Stretch reflex, muscle spindle, inverse stretch reflex, Polysynaptic reflex- Withdrawal reflex
Motor pathways: Pyramidal pathway and functions, UMN, LMNL
Cerebral cortex (Sensory and motor)-functions, Medulla and Pons-functions
Cerebellum- functions, disorders
Basal ganglia-functions, disorders
Hypothalamus and Limbic system-functions
CSF, lumbar puncture
Sleep, EEG,
Autonomic Nervous System - Sympathetic and parasympathetic distribution and functions

11. Special senses
Vision- Functional anatomy of eye, visual pathway, lesion
Refractive errors, color vision
Audition – Physiological anatomy of ear, Mechanism of hearing, auditory pathway, deafness
Olfaction- modalities, receptor, function, abnormalities
Gustation-modalities, receptor, function, taste pathway, abnormalities .Practicals
INTERNAL ASSESSMENT
Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10
*There shall be no university practical examination and internal assessment marks secured in
Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of
type of questions and marks for Physiology shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice) 10x3=30 marks
 Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practicals</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory IA</td>
<td>Sub Total</td>
<td>IA</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>120</td>
</tr>
</tbody>
</table>

REFERENCE BOOKS:
Chatterjee (CC) Human Physiology Latest Ed. Vol. 1, Medical Allied Agency
Choudhari (Sujith K) Concise Medical Physiology Latest Ed. New Central Book
Ganong (William F) Review of Medical Physiology. Latest Ed. Appleton
1. **Carbohydrate Chemistry [3 hours]**
 - Classification (Definition/ examples for each class)
 - Monosaccharides (classification depending upon number of carbon atoms and functional group with examples)
 - Disaccharides (Sucrose/ lactose/ maltose and their composition)
 - Polysaccharides:
 a) Homopolysaccharides (Structure of starch and glycogen)
 b) Heteropolysaccharides (Functions)

2. **Lipid Chemistry [3 hours]**
 - Definition of lipids
 - Functions of lipids in the body
 - Classification of lipids (subclasses with examples)
 - Definition and Classification of fatty acids
 - Essential fatty acids
 - Phospholipids and their importance

3. **Amino-acid and Protein Chemistry [3 hours]**
 - General structure of D and L amino acids
 - Amino acids; Definition and Classification of amino acids with examples.
 - Peptides; definition & Biologically important peptides
 - Classification of Proteins based on composition, functions and shape (with examples)
 - Functions of amino acids and Proteins

4. **Nucleotide and Nucleic acid Chemistry [3 hours]**
 - Nucleosides & Nucleotides
 - Nucleic acid Definition & types
 - Composition & functions of DNA & RNA
 - Structure of DNA (Watson and Crick model)
 - Structure of tRNA, & functions of tRNA, rRNA, mRNA
• Difference between DNA and RNA

5. **Enzymes [5 hours]**
 • Definition & Classification of Enzymes with example
 • Definitions of Active site, Cofactor (Coenzyme, Activator),
 • Proenzyme; Definition and examples (Pepsin & trypsin)

6. **Digestion and Absorption [3 Hours]**
 • General characteristics of digestion and absorption,
 • Digestion and absorption of carbohydrates, proteins and lipids.

7. **Carbohydrate Metabolism [5 Hours]**
 • Glycolysis; Aerobic, Anaerobic, Definition, Site and subcellular site, Steps with all the enzymes and coenzymes at each step, mention the regulatory enzymes, Energetics,
 • Citric acid cycle; Pyruvate dehydrogenase complex (reaction and coenzymes), Site and subcellular site, Reactions with all the enzymes and coenzymes, Regulatory enzymes, Energetics
 • Significance of HMP Shunt pathway.
 • Hyperglycemic and hypoglycemic hormones
 • Blood Glucose Regulation.
 • Diabetes mellitus (definition, classification, signs and symptoms)
 • **Glycogen metabolism and gluconeogenesis**

8. **Lipid Metabolism [4 Hours]**
 • Introduction to lipid metabolism, Lipolysis
 • Beta oxidation of fatty acids; Definition, Site and subcellular site, Activation of palmitic acid, Transport of activated palmitic acid into mitochondria, Reactions, Energetics.
 • Name the different ketone bodies. Note on ketosis

9. **Amino acid and Protein Metabolism [3 Hours]**
 • Introduction, transamination, deamination, Fate of ammonia, transport of ammonia,
 • Urea cycle.
10. **Vitamins [5 Hours]**
- Definition and classification.
- RDA, sources, coenzyme forms, biochemical functions and disorders for the following water soluble vitamins: Thiamine, Niacin, Pyridoxine, Cobalamin, Folic acid, Ascorbic acid
- RDA, sources, coenzyme forms, biochemical functions and deficiency disorders for the following fat soluble vitamins; A and vitamin D

11. **Mineral Metabolism [3 Hours]**
- Name the macro/ microminerals
- Iron: Sources ,RDA, Functions and Disorders of deficiency and excess
- Calcium and phosphorus: Sources ,RDA, functions, normal serum levels and hormones regulating their levels

12. **Nutrition [6 hours]**
- Balanced diet (Definition)
- Caloric value ; Definition , Caloric values of carbohydrates, proteins and fats
- Total daily caloric requirements of an adult male and female,
- RDA (Definition, standard values for nutrients)
- Basal metabolic rate(BMR) ; Definition , Magnitude of BMR in men and women, Factors affecting BMR
- Thermic effect/ SDA of food (Definition, values for major macronutrients)
- Carbohydrates ;. Daily dietary requirement. 2. Dietary fibers (Definition, functions, importance and their daily requirements)
- Proteins ;. Daily requirement, Biological value. a. Definition b. Protein used as a standard for this, Protein sources with high and low biological value , Mutual supplementation of proteins (Definition, examples).
- Fats ; Daily requirement , Essential fatty acids (Definition, functions, daily requirement and deficiency manifestations) , Saturated and unsaturated fatty acids (Definition, sources, examples).
- Malnutrition
13. Renal Function Tests [2 hours]
- Name the different tests to assess the kidney functions
- Explain Creatinine clearance & Inulin clearance
- Urinary acidification test

14. Radioactive Isotopes [1 hour]
- Definition, clinical applications
- Biological effects of radiations

15. Clinical Biochemistry [5 hours]
A. Definitions of acid, base, pH and pKa [1 hour]
B. Buffers • Definition [2 hours]
 - Henderson Hasselbalch equation,
 - Principal buffer systems in the ECF ICF and urine
 - Bicarbonate and phosphate buffer systems (pKa value, normal ratio of base/acid in the plasma)
 - Acidosis & Alkalosis (Definition, classification, causes and biochemical findings
C. Normal serum levels and condition where they are altered [2 hour]
 - Glucose, Protein, urea, uric acid, and creatinine
 - Bilirubin, cholesterol
 - Serum Electrolytes

16. Fundamental Chemistry (1 hour)
- Valency, Molecular weight & Equivalent weight of elements and compounds.
 Normality, Molarity, Molality.

17. Solutions: Definition, use, classification where appropriate, preparation and storage (5 hours)
- Stock and working solutions.
- Molar and Normal solutions of compounds and acids. (NaCl, NaOH, HCl, H2SO4, H3PO4, CH3COOH etc.)
- Preparation of percent solutions – w/w, v/v w/v (solids, liquids and acids),
 Conversion of a percent solution into a molar solution
- Saturated and supersaturated solutions
• Standard solutions. Technique for preparation of standard solutions and Storage. E.g: glucose, albumin etc.
• Dilutions- Diluting Normal, Molar and percent solutions. Preparing working standard from stock standard.
• Part dilutions: Specimen dilutions. Serial dilutions. Reagent dilution. Dilution factors

ASSIGNMENT TOPICS
1. Units of measurement
2. Hazards - Physical, Chemical, Biological
3. Arterial blood gas analysis
4. Responsibilities of Health care personnel
5. Biomedical waste management

PRACTICAL DEMONSTRATION
• Color Reactions of Carbohydrates & amino acids.
• Precipitation Reactions of proteins
• Colorimetry
• Estimation of Blood glucose Folin Wu and enzymatic method
• Estimation of Urea by DAM method

INTERNAL ASSESSMENT

Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practical need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Biochemistry I shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for First year)</th>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
<td></td>
</tr>
</tbody>
</table>
1. Long essay- 2 Questions (second question choice)
 2x10= 20 marks
2. Short essay - 10 Questions (Questions no 5 &10 choice)
 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice)
 10x3=30 marks
 Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practicals</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>IA</td>
<td>Sub Total</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>120</td>
</tr>
</tbody>
</table>

Text Book References
- Biochemistry – 3rd revised edition by U Sathyanarayana & U Chakrapani
- Textbook of Medical Biochemistry-6th Edition by MN Chatterjea & Rana Shinde
- Textbook of Medical Laboratory technology 2nd edition by Godkar and Godkar.
- Biochemistry-3rd edition by Pankaja Naik
- Medical Laboratory technology 6th edition by Ramnik Sood.
- Varley’s Practical Clinical Biochemistry, 4th, 5th and 6th editions

PATHOLOGY

Clinical Pathology, Hematology and Blood Banking

Theory-70 hours

Practicals-20 hours

I. **Clinical Pathology- Theory**

- Introduction to clinical pathology
- Collection , transport, preservation and processing of various clinical specimens
- Urine examination- collection and preservation, Physical, chemical and microscopic examination for abnormal constituents
- Examination of Body fluids
- Examination of Cerebrospinal fluid (CSF)
- Sputum examination
- Examination of feces
II. **Hematology – Theory**

- Introduction to hematology
- Normal constituents of Blood, their structure and functions
- Collection of Blood samples
- Various anticoagulants used in Hematology
- Hemoglobin estimation, different methods and normal values
- Packed cell volume
- Erythrocyte sedimentation rate
- Normal Haemostasis
- Bleeding time. Clotting time, prothrombin time, Activated partial Thromboplastin time

III. **Blood Bank- Theory**

- Introduction blood banking
- Blood group system
- Collection and processing of blood for transfusion
- Compatibility testing
- Blood transfusion reactions

- **General Pathology:**

- **Cell injury:**
 a. Definition, causes.
 b. Cellular adaptations – Hypertrophy, hyperplasia, atrophy and metaplasia.
 c. Types of cell injury – Reversible and irreversible; morphology of reversible injury.
 d. Necrosis – Definition and patterns of tissue necrosis.
 e. Intracellular accumulations – Lipids, cholesterol, proteins, glycogen and pigments; examples.
 f. Pathologic calcification – Types and examples.

- **3) Inflammation:**
 a. Definition and signs of inflammation.
b. Types – Acute and chronic inflammation.

c. Acute inflammation – Causes, morphological patterns and outcome.

d. Chronic inflammation – Causes, morphology and examples.

e. Regeneration and repair – Mechanism of cutaneous wound healing.

f. Factors affecting wound healing.

• **4) Hemodynamic disorders:**

a. Edema – Definition, pathogenesis and types: Renal, cardiac, pulmonary and cerebral.

b. Difference between transudate and exudate.

d. Thrombosis – Definition, mechanism of thrombus formation (Virchow’s triad) and fate of thrombus.

e. Embolism – Definition and types: Thromboembolism, fat, air and amniotic fluid embolism.

f. Infarction – Definition and examples.

• **5) Immune system:**

a. Autoimmune diseases – General features, enumerate systemic and organ specific autoimmune diseases.

b. Systemic lupus erythematosus – Manifestations and diagnosis.

• **6) Neoplasia:**

a. Definition and nomenclature of tumors.

b. Differences between benign and malignant neoplasms.
c. Enumerate modes of carcinogenesis: Genes, physical, chemical and microbial agents of carcinogenesis.

d. Modes of spread of tumors.

e. Clinical aspects of neoplasia.

f. Grading and staging of cancers.

g. Laboratory diagnosis of cancer.

Practicals
1. Urine analysis- Physical, Chemical, Microscopic
2. Blood grouping and Rh typing
3. Hb estimation, packed cell volume (PCV), Erythrocyte Sedimentation rate (ESR)
4. Bleeding time and Clotting time

INTERNAL ASSESSMENT
Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in
Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type
of questions and marks for Pathology I shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for First year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice) 10x3=30 marks
Total= 100
Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practicals</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>IA</td>
<td>Sub Total</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>120</td>
</tr>
</tbody>
</table>

REFERENCE BOOKS:

1. Culling Histopathology techniques
2. Bancroft Histopathology techniques
3. Koss- Cytology
4. Winifred Diagnostic cytopathology
5. Orell Cytopathology
6. Todd and Sanford- clinical diagnosis by Laboratory Medicine
7. Dacie and Lewis- Practical Hematology
9. Sathish Guptha , Short text book of Medical laboratory techniques for technicians
10. Sachdev K N. Clinical Pathology and Bacteriology, 8th ed JP Bros, New Delhi, 1996

Microbiology I

Theory: 70 Hours
Practicals: 20 Hours

1. Introduction (6 hrs)

Use of microscope in the study of bacteria - Types of microscopes - compound
microscope, phase contrast microscope, electron microscope, fluorescent microscope, dark ground microscope.
Morphology of bacterial cell

2. Growth and Nutrition (6 hrs.)
Nutrition, growth and multiplication of bacteria, bacterial growth curve, culture media, culture methods, anaerobic culture methods.

3. Sterilization and disinfection (8 hrs.)
Principles and use of equipments of sterilization, chemicals used in disinfection, testing of disinfectants.

4. Biomedical waste management principle and practice

5. Immunology (5 hrs.)
Immunity - mechanism of immunity, classification, types
Vaccines
Immunization schedule
Definition of antigen, antibody, list of antigen antibody reaction (no need of detailed account of antigen antibody reactions)
Definition of hypersensitivity and classification (no need of detailed account of types of hypersensitivity)

6. Infection (5 hrs.)
Definition, types and mode of transmission
Hospital acquired infection - causative agents, mode of transmission and prophylaxis.
Antimicrobial sensitivity testing

7. Systematic bacteriology (15 hrs.)
Disease caused and laboratory diagnosis of medically important bacteria (Staphylococcus, coagulase negative Staphylococcus, MRSA, Streptococcus pyogenes, Pneumococcus, gonococcus, E.coli, diarrhoeagenic E.coli, Salmonella, Vibrio cholerae, ElTor vibrios, Halophilic vibrios, Shigella, Mycobacterium tuberculosis, Mycobacterium leprae, Atypical Mycobacteria, Treponema pallidum, leptospira)
(no need of classification, antigenic structure, virulence mechanism)
8. Parasitology (10 hrs.)

Introduction to Parasitology
List of medically important parasites and diseases (E.histolytica, Plasmodium, W.bancrofti, Ascaris, Ancylostoma, B.coli, G.lamblia, T.solium, T.saginata)
Laboratory diagnosis of parasitic infection
(No need of including life cycles)

9. Virology (10 hrs.)

Introduction to virology
List of medically important viruses and diseases (AIDS, Hepatitis, Rabies, Polio, Arbo viruses)
Cultivation of viruses and laboratory diagnosis of viral infections

10. Mycology (5 hrs.)

Introduction to Mycology
Classification of medically important fungi - (based on morphology, spore production, disease production, taxonomy)
List of medically important fungi and diseases (Candidiasis, Cryptococciosis, Dermatophytes, Aspergillosis, Mucor Mycosis)
Laboratory diagnosis of fungal infections.

Practicals (20 hrs.)

Compound microscope (Demonstration)
Demonstration of sterilization equipments
Demonstration of culture media and culture methods
Demonstration of antibiotic sensitivity testing
Demonstration of serological tests - Widal, VDRL, ASO, CRP, RA
Demonstration of gram stain and ZN staining
Demonstration of Helminthic ova
Grans stain, Acid fast staining
Stool exam for Helminthic ova
INTERNAL ASSESSMENT

Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 100 marks. Distribution of type of questions and marks for Microbiology I shall be as given under.

SUBJECTS HAVING MAXIMUM MARKS= 100 (for First year)

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (Questions no 15 & 20 choice) 10x3=30 marks

Total= 100

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practical</th>
<th>IA</th>
<th>Sub Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>100</td>
<td>20</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand total</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Reference Books-
1. Ananthanarayana & Panikar Medical Microbiology- University Press
2. Robert Cruckshank- Medical Microbiology- The Practice of Medical Microbiology
3. Chatterjee- Parasitology- Interpretation to Clinical Medicine
4. Rippon- Medical Mycology
5. Emmons- Medical Mycology
6. Basic Laboratory methods in Parasitology, J P Bros, New Delhi
7. Basic Laboratory procedures in clinical bacteriology, J P Bros, New Delhi
8. Medical Parasitology- Ajit Damle
9. Introduction to medical microbiology- Ananthanarayana- Orient Longman Pvt. Ltd
SUBSIDIARY SUBJECTS

ENGLISH

COURSE OUTLINE

COURSE DESCRIPTION: This course is designed to help the student acquire a good command and comprehension of the English language through individual papers and conferences.

BEHAVIOURAL OBJECTIVES:

The student at the end of training is able to
1. Read and comprehend English language
2. Speak and write grammatically correct English
3. Appreciates the value of English literature in personal and professional life.

UNIT - I: INTRODUCTION:

Study Techniques
Organisation of effective note taking and logical processes of analysis and synthesis
Use of the dictionary
Enlargement of vocabulary
Effective diction

UNIT - II: APPLIED GRAMMAR:

Correct usage
The structure of sentences
The structure of paragraphs
Enlargements of Vocabulary

UNIT - III: WRITTEN COMPOSITION:

Precise writing and summarizing
Writing of bibliography
Enlargement of Vocabulary

UNIT - IV: READING AND COMPREHENSION:

Review of selected materials and express oneself in one's words.
Enlargement of Vocabulary.

UNIT - V: THE STUDY OF THE VARIOUS FORMS OF COMPOSITION:

Paragraph, Essay, Letter, Summary, Practice in writing

UNIT - VI: VERBAL COMMUNICATION:

Discussions and summarization, Debates, Oral reports, use in teaching Scheme of Examination

| SUBJECTS HAVING MAXIMUM MARKS= 80 (for First year) |
|---------------------------------|--------|-----------------|
| Type of Questions | NO. of questions | Marks for Each Questions |
| Essay Type | 3 (2 x 10) | 10 |
| Short Essay Type | 8 (6 x 5) | 05 |
| Short Answer Type | 12 (10 x 3) | 03 |

No Practical or Viva voce examination

This is a subsidiary subject, examination to be conducted by respective colleges. Marks required for a pass is 35%

REFERENCE

2. Wren and Martin - Grammar and Composition, 1989, Chanda & Co, Delhi
5. Journalism Made Simple D Wainwright
6. Writers Basic Bookself Series, Writers Digest series
HEALTH CARE

Teaching Hours: 40 Introduction to Health
Definition of Health, Determinants of Health, Health Indicators of India, Health Team Concept.
National Health Policy
National Health Programmes (Briefly Objectives and scope) Population of India and Family welfare programme in India Introduction to Nursing
What is Nursing? Nursing principles. Inter-Personnel relationships. Bandaging: Basic turns; Bandaging extremities; Triangular Bandages and their application.
Nursing Position, Bed making, prone, lateral, dorsal, dorsal re-cumbent, Fowler’s positions, comfort measures, Aids and rest and sleep.
Lifting And Transporting Patients: Lifting patients up in the bed. Transferring from bed to wheelchair. Transferring from bed to stretcher.
Bed Side Management: Giving and taking Bed pan, Urinal: Observation of stools, urine. Observation of sputum, Understand use and care of catheters, enema giving.
Methods of Giving Nourishment: Feeding, Tube feeding, drips, transfusion Care of Rubber Goods
Recording of body temperature, respiration and pulse, Simple aseptic technique, sterilization and disinfection. Surgical Dressing: Observation of dressing procedures
First Aid:
Syllabus as for Certificate Course of Red Cross Society of St. John's Ambulance Brigade.

Reference Books:
1. Preventive and Social Medicine by J.Park
2. Text Book of P & SM by Park and Park

Scheme of Examination
Written (Theory): Maximum Marks: ~80 marks. No Practical or Viva voce examination

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 80 (for First year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>Essay Type</td>
</tr>
<tr>
<td>Short Essay Type</td>
</tr>
<tr>
<td>Short Answer Type</td>
</tr>
</tbody>
</table>
This is a subsidiary subject, examination to be conducted by respective colleges. Marks required for a pass is 35%.

SECOND YEAR B.Sc. NEUROSCIENCE TECHNOLOGY

Applied Anatomy & Physiology Related to Neuroscience

Course Objective

This course will provide an outline of anatomy and physiology to improve the students understanding of the technical and diagnostic procedures used with special emphasis on applied aspects.

Unit I

Neuro Anatomy Cranial vault

Base of skull and relations The meanings

Cerebral hemispheres – Frontal, parietal, temporal and occipital lobes Basal ganglia & diencephalons

Midbrain Brain Stem Pons

Medulla oblongata Cerebellum

The ventricular system & cisterns Arterial supply (major vessels) Veins and venous sinuses

The cranial nerves 1 to 12 Surface anatomy of cranial nerves The spinal cord

The bony canal and ligaments and meanings and their extent; organization of structures in the cord at various levels

Arterial supply and Venous drainage

Spinal segments and spinal Nerve

Unit II

Neurophysiology

Physiology of vision – optic pathway Physiology of hearing – auditory pathway Motor control – pyramidal system Extra pyramidal system

Cerebellum

Physiology of the ANS – divisions, chemical Transmission functions & higher centers for regulation The autonomic nervous system
Sympathetic nervous system Parasympathetic nervous system Formation

Neuro transmitters

The skeletal muscles Myotomes & their innervations Dermatomes & their innervation Membrane potentials

Action potential

Synaptic transmission – excitation, inhibition

The physiology of Neuro-muscular transmission – the n-m junction Types of somatic sensations & sensory pathways

Physiology of muscle – mechanisms of contraction & relaxation The motor unit – its composition & function

Practicals: Includes the abovementioned theory units Recommended Books

Clinical Neuroanatomy – Richard.S.Snell

Reference Books

1. Manual of Practical Anatomy - Cunningham’s (G.J. Romones)
2. Textbook of Anatomy with colour atlas - Inderbir Singh
3. Textbook of Medical Physiology – Guyton & Hall

SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (No choice) 10x3= 30 marks

Total= 100

NO PRACTICALS
Basic Electroencephalography

Theory 70 hours
Practical 30 hours

Course Objective
This course will cover basic instrumentation parameters, fundamentals of EEG, appropriate electrode placement using the International 10-20 System of head measurement, machine operation and instrumentation, EEG pattern recognition, Interpret record, morphology and various abnormal EEG.

Unit – I
Basics of Instrumentation Electrical concepts Conduction, insulation
Voltage current, resistance, power Capacitance, inductance
DC/AC
Impedance Transistors
Differential power amplifier

Unit – II
The Electroencephalography & Instrumentation
Filter-High frequency
 Low frequency
 Time constant Biological filters
 50Hz filters
Sensitivity
Calibration
Paper speed
Pen
mechanism
Digital Signal process
Gain
Sweep
Stimulator
Jackbox
Common mode rejection
Block Diagram of EEG
Activational Procedures
- Photic Stimulation
- Hyper ventilation
Signal to noise ratio
Sampling rate

Unit – III
Electroencephalography recording technique
Electrodes-Types, Materials, Maintenance of electrode

Modes of application

The 10-20 system
The 10-10 system
Special electrodes in EEG
Reporting
Montages-Bipolar/Referential/Monopolar/ laplacian
Video of EEG
Ambulatory EEG

Unit – IV
Normal rhythms & Abnormal
(A) Seizure , Epilepsy and the classification of epilepsy
(B) Normal rhythms: alpha, beta, gamma, delta, theta, Mu, Lambda, Conewaves
(C) Abnormal waveforms: Spike, Sharp, Polyspike, spike and slow waves, PLEDS, Slow waves, FIRDA, Phantom Spike and wave, Photoparoxysmal response, triphasic sharp waves
Epilepsy

- Abnormal epileptic patterns
 (a) Benign rolandic epileptic forms
 (b) 3/sec cycle
 (c) CJD
 (d) PLED’s
 (e) Subacute sclerotic lateralized epileptic discharges
 (f) Hypsarhythmia/ west syndrome

Unit – V

Artifacts

Non- Physiological Artifact

Physiological Artifact

Unit – VI

Patients grounding & safety

- Analog and digital EEG
- Factors affecting EEG
- Drugs affecting EEG
- EEG changes in sleep
- EEG in comatose patience
- Electrical silence

Unit – VII

Disease Condition Related

- Mechanism
- Clinical features
- Diagnosis
- Treatment
- Alzheimer
- Dementia
- Parkinson’s disease
- Parkinson’s Plus
- Parkinsonism
- Stroke – Thrombotic, Embolic, Aneurysm, TIA
- Epilepsy
- Management of Seizure
- Glasgow coma scale
- Hydrocephalus
- EEG findings in brain death
Unit – VIII

- Neuro transmitters in CNS
- Intraoperative EEG monitoring during epilepsy surgery

Practicals: Includes the above mentioned theory units

Recommended Books

1. EEG in Clinical in Practice – John R. Hughes
2. Electroencephalography – Ernst Niedermeyer, Fernando Lopes da Silva

Reference Books

1. Primer of EEG: With A Mini-Atlas, 1e - A. James Rowan MD and Eugene Tolunsky MD

SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (No choice) 10x3= 30 marks

Total= 100

PRACTICALS:
Practical exam: 80 marks
One common practical for all the papers with equal weightage of marks i.e.40 practical marks for each paper.
Basic Nerve Conduction Studies (NCS)

Theory 70 hours
Practical 30 hours

Course Objective
This course will cover basic instrumentation parameters, fundamentals of NCS, appropriate electrode stimulation and recording parameters, machine operation and instrumentation, waveform pattern recognition, basic troubleshooting skills, relate skills for performing basic and uncommon NCS procedures and identify potential disease or injury processes correlates with NCS results.

Unit – I
Basics of Nerve conduction studies
Nerve conduction velocity Action potential
CMAP & SNAP
Depolarization, Repolarization, Hyperpolarization Ions exchange
Stimulation parameters Recording Techniques Resting membrane potential End plate potential Miniature end plate potential Threshold

Unit – II
Motor & Sensory Nerve conduction

- Median Nerve:
 -Anatomy
 -Techniques
 -Values
 -Clinical conditions (CTS, median nerve neuropathy, median nerve palsy)
 -Test (physical examination, tinel’s test, Phalen’s, Maneuver test)

- Ulnar Nerve:
 -Clinical conditions (cubital tunnel syndrome, ulnar nerve palsy, ulnar neuropathy, claw hand)
 -Test (physical examination, Watson test, Shear test, Piano key sign, Lichtman test)

- Radial Nerve:
 -Clinical conditions (Radial tunnel syndrome, Saturday night palsy, radial neuropathy)
 -Test (physical examination, NCS)
• **Peroneal Nerve:**
 - Clinical conditions (fool drop, peroneal nerve palsy, common peroneal nerve dysfunction, peroneal neuropathy)
 - Test (physical examination, NCS, common peroneal nerve stress)

• **Tibial Nerve:**
 - Clinical conditions (tarsal tunnel syndrome, tibial neuropathy)
 - Test (tarsal tunnel syndrome test, NCS)

• **Superficial Peroneal Nerve:**
 - Clinical conditions (Superficial Peroneal Nerve entrapment)
 - Test (NCS, physical examination)

• **Sural Nerve:**
 - Clinical conditions (mononeuropathy)
 - Test (NCS, physical examination)

• **Facial Nerve:**
 - Clinical conditions (Bell’s palsy, facial palsy, Bell’s Phenomenon, ptosis)
 - Test (FNC, blink reflex)

• **Trigeminal Nerve:**
 - Clinical conditions (Trigeminal Neuralgia)
 - Test (pm or cotton swap test)

• **Brachial Plexus**
 - Introduction
 - Schematic Diagram
 - Median
 - Ulnar
 - Radial
 - Axillary
 - Musculocutaneous
 - Clinical conditions (Brachial plexus injuries – stingers, by birth, inflammation or tumor and accidents)
 - Test (EMG, NCS, MRI, CT)

Unit – III

Late Responses

F-waves H-
reflex Axonal

Unit – IV
Nerve conduction study changes in damaged Nerve conditions

Traumatic Demyelinating

AxonalMotor neuron disease Neuropraxia

Wallerian degeneration Axonal temesis Neurotemesis

Computer application in Nerve conduction studies

Practicals: Includes the above mentioned theory units

- Electrodes Identification
- Electrode Application
- Care of Electrodes
- Calculation of Nerve Conduction Parameters

Interpretation of basic Nerve Conductions studies

Recommended Books

1. Laboratory Reference for Clinical Neurophysiology – Jay.A.Liveson Dong.M.Ma
2. Electrodiagnostic Medicine – Daniel Dumitru

Reference Books

1. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practiceby Jun Kimura

SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice) \(2\times10=20\) marks
2. Short essay - 10 Questions (Questions no 5 &10 choice) \(10\times5=50\) marks
3. Short answer - 10 Questions (No choice) \(10\times3=30\) marks

Total= 100

PRACTICAL:

Practical exam: 80 marks

One common practical for all the papers with equal weightage of marks i.e. 40 practical marks for each paper.
PHARMACOLOGY

Theory 50 hours

COURSE OBJECTIVE:
To introduce the student a significance of medicine related to general pharmacology.

COURSE CONTENT:
2. Introduction to Pharmacology
3. Pharmacokinetics
4. Pharmacodynamics
5. Adverse effects of drugs
6. Classification of drugs
7. 6.1. Autonomic nervous system
 ✓ Introduction. Neurotransmitters, their mechanism of action
 ✓ Drugs affecting-
 - Pupillary size and light reflex
 - Intraocular tension
 - Accommodation
 ✓ Skeletal muscle relaxants
7. 1. Cardiovascular system
 ✓ Antihypertensives and drugs useful in angina
8. 1. Diuretics
 ✓ IN ocular disorders
9. 1. Central nervous system
 ✓ Alcohol, sedative hypnotics, general & local anesthetics, opioids & non-opioids
10. 1. Chemotherapy
 ✓ Introduction, general chemotherapy
 ✓ Specific chemotherapy – antifungal, Antiviral, Antitubercular, Antileprotic
10. 1. Hormones
 ✓ Corticosteroids
 ✓ Antidiabetics
11. 1. Blood
12. Coagulants
13. Antibiotics
14. Anti inflammatory
15. Analgesic and antipyretic
16. Muscle relaxant etc.
17. Classification, effects, mechanism of action, indication and contra indication.
PHARMACOLOGY RELATED TO NEUROSCIENCE TECHNOLOGY

Course Objective

This course will cover general pharmacology with special emphasis on common drugs, routes of administration, types of formulations, dose and frequency of administration, side effects and toxicity, management to toxic effects, drugs interactions, knowledge of chemical and trade names, importance of manufacturing and expiry dates and instructions about handling drugs.

Unit – I

Epilepsy

Neurotransmitters, Therapeutics, Antiepileptic drugs, dosage & side effects (toxicity), Phenytoin (eptoin, dilantin 100) also parenteral, Phenobarbitone (Gardenal 30, 60 also parenteral.), Carbamezapine (tegretol, zeptol, mazetol, Zen 100, 200, 400), Carbamazepine – controlled release (or), Valproate sodium (valparin, epile x 200, syrup), Ethosuximide (zarontin), Primidone, Colonzepam (rivotril, lanazep 0.5,2)

New drugs

Gabappentin (neuortin 300, 400, 600), Vigabatrin, Lamotrigine, Drugs used in emergency: - diazepam (IV), IM, Lorazepam (IV, IM), Phenytoin (IV), Phenobarbitone (IV), Lignocaine (IV), Valproate (IV), Pentothal Sodium (IV), Pharmacology of neuromuscular transmission

Unit – II

Neurotransmitters

Receptors, Types, Mechanisms

Drugs used - Neostigmine, Pyridostigmine, Edrophonium, guanidine

Unit – III

Cerebral Vascular Accident

Drugs used, Antiplatelet agents, Aspirin, ticlopidine, anti Coagulants, Heparin, Warfarin, anti hypertensives, Oral hypoglycemics (anti diabetic), Anti edema agents (Diuretics) Mannito, Steroids, Frusemide (Lasix), Thazides.
Unit – IV

Extrapyramindal disease

Drugs used - Levodopa, Pacitane, Haloperidol,

Unit – V

Infections – Antibiotics, Anti parasitic, Anti viral, Anti fungal agents, Anti mycobacterial,

Miscellaneous – Steroids, Anti inflammatory agents, Pain Mechanism, Analgesics. Other psychotropic, Drugs

Recommended Books

1. Essentials of Medical Pharmacology - Triparthi
2. Medical Pharmacology for Allied Health Sciences – Padmaja Udayakumar

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for Second and Third Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (No choice) 10x3= 30 marks
Total= 100

NO PRACTICAL EXAMINATION

SUBSIDIARY SUBJECTS

CLINICAL PSYCHOLOGY

THEORY HOURS: 20

1. Introduction to psychology
2. Intelligence, Learning, Memory, Personality, Motivation
3. Body integrity- one’s body image
4. Patient in his Milan
5. Selfconcept of the therapist, Therapistpatient relationship-some guidelines
6. Illness and it’s impact on the patients
7. Maladies of the age and their impact on the patient’s own and others concept of his body image
8. Adapting changes in vision
9. Why Medical Psychology needs / demands commitment?
THIRD YEAR B.Sc NEUROSCIENCE TECHNOLOGY

Advanced Neuroscience technique 1

Theory 70 hours
Practical 30 hours

Course Objective
This course will cover basic instrumentation parameters, fundamentals of EP’s, appropriate electrode placement stimulation and recording parameters, machine operation and instrumentation, waveform pattern recognition, basic troubleshooting skills, relate skills for performing basic and uncommon EP’s procedures and identify potential disease or injury processes correlates with Ep’s results.

Unit – I
Evoked Potentials - Basics of Instrumentation
Evoked potentials-definition
Principles of averaging/recording techniques
Evoked potential Instrumentation
 - General
 - Analogue
 - Digital
Signal to noise ratio
Frequency response
Internal noise

Unit – II
B.A.E.R
Introduction Auditory pathway Patient preparation
Materials required Procedure
Factors affecting
Normal values and waveforms Limitations
Clinical conditions – MS, CP angle, tumor BAER in Pediatrics
Unit – III

V.E.P

Introduction Visual pathway Types of VEP Patient preparation Materials required
Procedures Factors affecting Limitations Normal values Clinical conditions Pediatric VEP
Responses and values

Unit – IV

SSEP

Introduction Patient preparation Technique
Types
Upper limbs - Median SSEP
Lower limbs – Tibial Motor SSEP
Special techniques – MEPs
SSEP in brainstem/spinal cord/ Anatomical and physiological basis of SEP Reproducibility of SEP
Patient related factors of SEP Clinical applications of SEP Multiple Sclerosis
Metabolic disorders Plenopathy
Spinal cord trauma
Cervical Spondylosis and myelopathy Surgical monitoring of SSEP

Unit – V

MEP

Measurements of CMCT and PMCT in MEP(Peripheral and central motor conduction time)
Tract – CT
Abnormalities in CMCT
Clinical conditions in MEP
MS Motor neuron disease
Movement disorders
Peripheral nerve disorders
Lumbar spinal sternosis and radiculopathies Miscellaneous disorders
Psychogenic weakness
Myelopathy Cerebral infarction Patient preparation Procedure Limitations

Unit – VI
BLINK REFLEX

Unit – VII
Neuropathies
AIDP
GBS
CIDP
Peripheral Neuropathy Diabetic neuropathy Subacute idiopathic
Demyelinating polyradiculoneuropathy Multifocal motor neuropathy
Focal Neuropathy
Neuropathies associated with AIDS
(a) Mononeuropathy
(b) Progressive Polyradiculoneuropathy
(c) Autonomic neuropathy

Unit – VIII
Radiculopathy
L₅ – S₁ radiculopathy
Cervical
Cervical spondylosis
S₁ – S₂
Conduction block
Temporal dispersion

Unit – IX
Special technique Median
ulnar radial
parasympathetic response
Unit – X
Lumbar plexus
Lumbosacral plexopathy
Femoral
Saphenous
Obturator
L.F.C.N
Meralgia paraesthesia
Sacral Plexus
Sciatic
Common Peroneal
Deep Peroneal
Superficial Peroneal
Sural NCS
Tibial
Tarsal tunnel syndrome
Posteriorcutaneous nerve of thigh

Unit – XI
Spinal cord compression
Lumbar disc prolapsed
Spinal cord injury

Unit – XII
Non limb nerves
Computer application in evoked potentials

Practicals: Includes the abovementioned theory units

Recommended Books
1. Laboratory Reference for Clinical Neurophysiology – Jay.A.Liveson
Reference Books

1. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice by Jun Kimura

SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay - 2 Questions (second question choice) \(2 \times 10 = 20\) marks
2. Short essay - 10 Questions (Questions no 5 & 10 choice) \(10 \times 5 = 50\) marks
3. Short answer - 10 Questions (No choice) \(10 \times 3 = 30\) marks

Total = 100

PRACTICAL EXAMINATION: One common practical for all the papers with equal weightage of marks i.e. 40 practical marks for each paper.

ADVANCED TECHNIQUE - II

Course Objective

This course will cover basic instrumentation parameters, fundamentals of EMG & Autonomic Function Studies, recording parameters, machine operation and instrumentation, correctly identify and grade needle EMG findings, waveform pattern recognition, basic troubleshooting skills, safety considerations related to EMG testing.

Electromyography & Special studies

Unit – I

Disease Related

Autosomal dominant disease

Disorders of body schema

Antons syndrome
Spacial disorder

Various disorders of speech and language

Verbal fluency aphasia

Ataxia

Apraxia

Nominal aphasia

Broca aphasia

Dysarthria

Unit – II

PSG

Introduction

Normal adult PSG

Stages of sleep

Waveform

- K complex
- POST
- Sleep sprindles
- VST
- BETS

Clinical condition

- Apnea
 (a) Central
 (b) OSA
 (c) Mixed
- Hypopnea
- Parasomnias
- Narcolepsy
- REM sleep disorder
- Arousal seizures
- RLS
- PLM’s
- RERA
- AHI
- CPAP
- BiPAP

Unit – III

Paediatric PSG

Introduction

Disease

- Apnea
- Obstructive hypoventilation
- Gastroesophageal reflux
- Nocturnal Seizures
- PLMD (Pediatric Limb Movement Disorder)
- SIDS

Sleep center environment

Recording parameter

Capinography

- End tidal
- Transcutaneous

Audio and video recording

Paediatric montages

Biocalibrations
Unit – IV

EMG

Basics

Recording techniques

Muscles and localization

Insertional activity

Spontaneous activity

Motor units

Polyphasic

SFEMG

Jitter and blocking

SEMG

QEMG

Fasiculations

Fibrillations

Macro EMG

Types of needles

Unit – V

Normal and abnormal patterns

Endplate potential

MUP

Localization technique
Neurogenic patterns
Myopathic patterns

Clinical conditions

ALS
Myopathy
Myotonia
Dystonia
Muscular dystrophies
DMD
Polymyocitis
Anterior poliomyelitis
Willson disease
Deep tendon reflex

Unit – VI

Patient safety in EMG
Computer application in EMG

Therapeutic AIDS for few neurological disorder
VNS
TMS
ECT
FES
Unit – VII

Autonomic Function Studies

Sympathetic skin response

R-R interval

Practicals: Includes the abovementioned theory units

Recommended Books

2. Laboratory Reference for Clinical Neurophysiology – Jay.A.Liveson Dong.M.Ma

Reference Books

1. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice by Jun Kimura
2. Clinical Electromyography – Shin J. OH

SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No. of Questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Essay</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay</td>
<td>10</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

1. Long essay- 2 Questions (second question choice) 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice) 10x5= 50 marks
3. Short answer- 10 Questions (No choice) 10x3= 30 marks

Total= 100

PRACTICAL EXAMINATION:
One common practical for all the papers with equal weightage of marks i.e. 40 practical marks for each paper.
SYSTEMIC DISEASES

CONCEPTS OF DISEASE AND OUTLINES OF CLINICAL EVALUATION RELATED TO NEUROSCIENCE TECHNOLOGY

Theory 50 hours

Course Objective

This course will cover common diseases and their causes, pertinent microbiology and pathology of the system involved, outline of major signs and symptoms and management of the disease including medical and surgical intervention.

The basic neurological examination with emphasis on

Unit – I

- CVA Cause, Types, syndromes, treatment
 - Ischaemic diseases
 - Thrombotic
 - Embolic
- Trauma Head injury
 - Spinal
 - Peripheral
- Vascular diseases
 - Hemorrhagic
 - Intra cerebral hemorrhage
 - Sub arachnoid hemorrhage
 - Haematoma
 - Hemiplegia
 - Hemiparesis
 - Quadriplegia
 - Paraplegia
 - Extradural haematoma
 - Damage of Lobes
 - Effects of cerebella lesion
 - Bed sores

Unit – II

- Infectious diseases
 - Bacterial
Mycobacterial
Viral
Fungal
Spirochetal
Rickettsial
Viral encephalitis
Tuberculosis meningitis
Japanese encephalitis

- Demyelinating disease
 - CIDP
 - Central Multiple sclerosis
 - Peripheral other Demyelinating neuropathies

Unit – III

- Somatic disorders
 - Pain
 - Headache
 - Backache
 - Craniofacial pains
 - Cervical spondylosis
 - Thoracic outlet syndrome

Unit – IV

- Disorders of speech & Language
 - Aphasia & its types
 - Articulation & phonation
 - Disease of cranial nerves
 - V & VII nerve

Unit – V

- Inherited metabolic disease
 - Autosomal disease
 - Mitochondrial disease
Disturbances of cerebrospinal fluid - Hydrocephalus

Unit – VI

- Sleep & its abnormalities
 Physiology
 Sleep disorders
- Developmental disease of nervous system
 Microcephaly, Macrocephaly

Unit – VII

Epilepsies

Classification & clinical approach
Epileptic syndrome
Treatment

Unit – VIII

Disorders of PNS & Neuromuscular transmission

Neuropathies/entrapment and infective neuropathies-Leprosy, Rabies
Myasthenia gravis
Myasthenic syndrome
Botulism

Unit – IX

Disorder of muscle

Twitches & pain & cramps
Inflammatory myopathies
Muscular dystrophies – Classification
Metabolic & toxic myopathies
Congenital muscular disorders
Myotonia

Unit – X

Degenerative disorders & Classification
Alzheimers
Dementia
Chorea

Extrapyramidal disorders
Parkinsonism

Unit – XI

Disorders of Autonomic Nervous system
Physiology
Regulation of BP

Unit – XII

Disorders of equilibrium
Vertigo
Toxic and metabolic disorders
Deficiency disorders
Migraine
Giddiness
Syncope
Loss of Consciousness

Practicals: Includes the abovementioned theory units

Recommended Books
1. Principles of Neurology – Victor Adams
2. Neurology and Neurosurgery Illustrated - Kenneth W. Lindsay

Reference Books
Neurology in Clinical Practice Principles of Management and Diagnosis – Bradley Daroff Fenichel Jankovic

SCHEME OF EXAMINATION

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 100 (for Second and Third Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Long Essay</td>
</tr>
<tr>
<td>Short Essay</td>
</tr>
<tr>
<td>Short Answer</td>
</tr>
</tbody>
</table>
1. Long essay- 2 Questions (second question choice)
 2x10= 20 marks
2. Short essay- 10 Questions (Questions no 5 &10 choice)
 10x5= 50 marks
3. Short answer- 10 Questions (No choice)
 10x3= 30 marks
 Total= 100

NO PRACTICAL EXAMINATION

SUBSIDIARY SUBJECTS

RESEARCH METHODOLOGY & STATISTICS

THEORY HOURS: 60

1. Introduction I: Biostatistics
 Definition
 Role of statistics in health science and health care delivery system

2. Introduction II: Research Methodology
 Research process
 Steps involved in research process
 Research methods and methodology

3. Variables and scales of measurements
 Definitions and examples of qualitative, quantitative, continuous discrete, dependent and independent variables.
 Definitions, properties and examples of nominal, ordinal, interval and ratio scales of measurements

4. Sampling
 ✓ Population, sample, sampling, reasons for sampling, probability and non-probability sampling.
 ✓ Methods of probability sampling – simple random, stratified, systematic- procedure
 ✓ Merits and demerits.
 ✓ Use of random number table.

5. Organization of data
 Frequency table, histogram, frequency polygon, frequency curve, bar diagram, pie chart

6. Measures of location
 ✓ Arithmetic mean, median, mode, quartiles and percentiles – definition
 Computation (for raw data), merits, demerits and applications

7. Measures of variation
 ✓ Range, inter-quartile range, variance, standard deviation, coefficient of variation-definition
 Computation (for raw data), merits, demerits and applications

8. Normal distribution
 ✓ Concept, graphical form, properties, examples
Concept of Skewness and Kurtosis

9. Correlation
 ✓ Scatter diagram

concept and properties of correlation coefficient, examples [No computation]

10. Health Information System
 ✓ Definition, requirement, component and uses of health information system.

Sources of health information system- Census, Registration of vital events, Sample registration system (SRS), Notification of diseases, Hospital records, Disease registries, Record linkage, Epidemiological surveillance, Population survey

11. Vital statistics and hospital statistics

12. Hypothesis
 ✓ What is hypothesis
 ✓ Formulation of hypothesis

Characteristics of good hypothesis.

13. Epidemiology
 ✓ Concept of health and disease
 ✓ Definition and aims of Epidemiology,

Descriptive Epidemiology- methods and uses.

14. Concept of reliability & validity

RECOMMENDED BOOKS

2. Research methodology – Methods & techniques Kothari.C.R
