REVISED ORDINANCE GOVERNIN REGULATIONS
AND CURRICULUM OF

B.Sc. RADIOTHERAPY TECHNOLOGY COURSE - 2019

Rajiv Gandhi University of Health Sciences,
Karnataka, Bangalore
The Emblem

The Emblem of the Rajiv Gandhi University of Health Sciences is a symbolic expression of the confluence of both Eastern and Western Health Sciences. A central wand with entwined snakes symbolises Greek and Roman Gods of Health called Hermis and Mercury is adapted as symbol of modern medical science. The pot above depicts Amrutha Kalasham of Dhanvanthri the father of all Health Sciences. The wings above it depicts Human Soul called Hamsa (Swan) in Indian philosophy. The rising Sun at the top symbolises knowledge and enlightenment. The two twigs of leaves in western philosophy symbolises Olive branches, which is an expression of Peace, Love and Harmony. In Hindu Philosophy it depicts the Vanaspathi (also called as Oushadi) held in the hands of Dhanvanthri, which are the source of all Medicines. The lamp at the bottom depicts human energy (kundalini). The script “Devahitham Yadayahu” inside the lamp is taken from Upanishath Shanthi Manthram (Bhadram Karnebh i Shrunuyanadev…), which says “May we live the full span of our lives allotted by God in perfect health” which is the motto of the Rajiv Gandhi University of Health Sciences.
NOTIFICATION

Sub: Revised Ordinance pertaining to Regulation and Curriculum of B.Sc. Radiotherapy Technology.

Ref: 1) Minutes of BOS Allied Health Sciences held on 13/05/2019
2) Proceedings of Faculty meeting held on 15/05/2019
3) Proceedings of AC meeting held on 17/06/2019
4) Proceedings of Syndicate meeting held on 29/06/2019

In exercise of the powers vested under Section 35(2) of RGUHS Act, 1994, the Revised Ordinance pertaining to Regulation and the curriculum of B. Sc. Radiotherapy Technology is notified herewith as per Annexure.

The above Regulation shall be applicable to the students admitted to the said course from the academic year 2019-20 onwards.

By Order,

Sd/-

REGISTRAR

To

The Principals of all affiliated Allied Health Sciences Course colleges of RGUHS, Bangalore.

Copy to:
1. The Principal Secretary to Governor, Raj Bhavan, Bangalore - 560001
2. The Principal Secretary Medical Education, Health & Family Welfare Dept., M S Building, Dr.B.R. Ambedkar Veedhi, Bangalore – 01
3. PA to Vice – Chancellor/PA to Registrar/Registrar (Eva.)/Finance Officer, Rajiv Gandhi University Health Sciences, Bangalore
4. All Officers of the University Examination Branch/ Academic Section.
5. Guard File / Office copy.
1. Eligibility for admission:

A candidate seeking admission to the BSc. Radiotherapy Technology shall have studied English as one of the principal subject during the tenure of the course and shall have passed:

1. Two year Pre-University examination or equivalent as recognized by Rajiv Gandhi University of Health Sciences with, Physics, Chemistry and Biology as subjects of study.

OR

2. Pre-Degree course from a recognized University considered as equivalent by RGUHS, (Two years after ten years of schooling) with Physics, Chemistry and Biology as subjects of study.

OR

3. Any equivalent examination recognized by the Rajiv Gandhi University of Health Sciences, Bangalore for the above purpose with Physics, Chemistry and Biology as subjects of study.

OR

4. The vocational higher secondary education course conducted by Vocational Higher Secondary Education, Government of Kerala with five subjects including Physics, Chemistry, Biology and English in addition to vocational subjects conducted is considered equivalent to plus TWO examinations of Government of Karnataka Pre University Course.
5. Candidates with two years diploma from a recognized Government Board in Radiotherapy Technology shall have passed class 12 [10+2] with Physics, Chemistry and Biology, as subjects or candidates with 3 years diploma from a recognized Government Board in Radiotherapy Technology should have studied Physics, Biology and Chemistry as subjects during the tenure of the course.

6. Lateral entry to second year of B.Sc. Radiotherapy Technology for candidates who have passed diploma program from the Government Boards and recognized by RGUHS, fulfilling the conditions specified above under Sl. No. 5 and these students are eligible to take admission on lateral entry system only in the same subject studied at diploma level from the academic year 2008-09 vide RGUHS Notification no. AUTH/AHS/317/2008-09 dated:01.08.2008.

Note:

a. The candidate shall have passed individually in each of the subjects.

b. Candidates who have completed diploma or vocational course through Correspondence shall not be eligible for any of the courses mentioned above.

2. Duration of the course:

Duration shall be for a period of four years including one year of Internship.

3. Medium of instruction:

The medium of instruction and examination shall be in English.

4. Scheme of examination:

There shall be three examinations one each at the end of 1st, 2nd and 3rd year.
5. Attendance

Every candidate should have attended at least 80% of the total number of classes conducted in an academic year from the date of commencement of the term to the last working day as notified by university in each of the subjects prescribed for that year separately in theory and practical. Only such candidates are eligible to appear for the university examinations in their first attempt. Special classes conducted for any purpose shall not be considered for the calculation of percentage of attendance for eligibility. A candidate lacking in prescribed percentage of attendance in any subjects either in theory or practical in the first appearance will not be eligible to appear for the University Examination in that subject.

6. Internal Assessment (IA):

1st Year B.Sc Radiotherapy Technology

Theory - 20 marks
Practicals - 10 marks*. [Lab work- 06 marks and Record-04 marks]

2nd & 3rd year B.Sc Radiotherapy Technology

Theory – 20 Marks
Practicals – 20 Marks

There shall be a minimum of two periodical tests preferably one in each term in theory and practical of each subject in an academic year. The average marks of the two tests will be calculated and reduced to 20. The marks of IA shall be communicated to the University at least 15 days before the commencement of the University examination. The University shall have access to the records of such periodical tests. The marks of the internal assessment must be displayed on the notice board of the respective colleges within a fortnight from the date test is held. If a candidate is absent for any one of the tests due to genuine and satisfactory reasons, such a candidate may be given a re-test within a fortnight.

* There shall be no University Practical Examination in First year.

7. Subject and hours of teaching for Theory and Practicals

The number of hours of teaching theory and practical, subject wise in first year, second year and third year are shown in Table-I, Table-II and Table-III.

Main and Subsidiary subjects are common in first year for all the courses in Allied Health Science.

The number of hours for teaching theory and practical for main subjects in first, Second and Third year are shown in Table-I, II and III.
Table - I
Distribution of Teaching Hours in First Year Subjects

Main Subjects

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject</th>
<th>Theory No. of Hours</th>
<th>Practical No. of Hours</th>
<th>Total No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Human Anatomy</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>2.</td>
<td>Physiology</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>3.</td>
<td>Biochemistry</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>4.</td>
<td>Pathology-[Clinical pathology, Hematology & Blood -Banking)</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>5.</td>
<td>Microbiology</td>
<td>70</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>350</td>
<td>100</td>
<td>450</td>
</tr>
</tbody>
</table>

The classes in main and subsidiary subjects are to be held from Monday to Thursday. On Fridays and Saturdays students shall work in hospitals in the respective specialty or department chosen by them.

Subsidiary Subjects

- English: 25 Hours
- Kannada: 25 Hours
- Health-Care: 40 Hours

Hospital posting:
- Friday: 9am - 1pm and 2pm - 4-30 pm
- Saturday: 9am - 1pm

Departmental/ Hospital Posting: 450 Hours.

Subject and hours of teaching for Theory and Practicals for 2nd and 3rd year

The number of hours of teaching theory and practical subject wise in second year and third year are shown in Table-II and Table-III

TABLE-II:
DISTRIBUTION OF SUBJECTS AND NUMBER OF HOURS OF TEACHING IN SECOND YEAR

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject</th>
<th>Theory No. of Hours</th>
<th>Practical No. of Hours</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Physics of Radiology, Radiation Physics & Medical Physics</td>
<td>100</td>
<td>No Practical</td>
<td>100</td>
</tr>
<tr>
<td>1.</td>
<td>Radiographic Techniques I*</td>
<td>100</td>
<td>540 (Hospital Postings)</td>
<td>640</td>
</tr>
<tr>
<td>1.</td>
<td>Radiographic Photography and Image Processing</td>
<td>100</td>
<td>240</td>
<td>340</td>
</tr>
</tbody>
</table>
Exam For This Subject Will Be Held In III Year.

Subsidiary Subjects:

- Sociology 20 Hours
- Constitution of India 10 Hours
- Environmental Science & Health 10 Hours

TABLE-III:

DISTRIBUTION OF SUBJECTS AND NUMBER OF HOURS OF TEACHING IN THIRD YEAR

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject</th>
<th>Theory No. of Hours</th>
<th>Practical No. of Hours</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diagnostic Imaging Techniques</td>
<td>200</td>
<td>340</td>
<td>540</td>
</tr>
<tr>
<td>1</td>
<td>Radiographic Techniques II</td>
<td>100</td>
<td>440</td>
<td>540</td>
</tr>
</tbody>
</table>

Subsidiary Subjects

- Biostatistics 20 Hours
- Computer Application 10 Hours

3. **Attendance**

Every candidate should have attended at least 80% of the total number of classes conducted in an academic year from the date of commencement of the term to the last working day as notified by the university in each of the subjects prescribed for that year separately in theory and practical. Only such candidates are eligible to appear for the university examinations in their first attempt. Special classes conducted for any purpose shall not be considered for the calculation of percentage of attendance for eligibility. A candidate lacking in prescribed percentage of attendance in any subjects either in theory or practical in the first appearance will not be eligible to appear for the university examination in that subject. Failed candidates should have attended at least 80% of the total number of classes conducted in that term in individual subjects separately in theory and practical to become eligible to appear for the university examination in that subject in the supplementary or subsequent examination. However, this is not applicable in case of carryover subjects.

4. **Internal Assessment (IA):**

First, Second And Third Year

Theory - 20 Marks.

Practical - 20 Marks. [Lab Work- 15 Marks And Record-5 Marks]

There shall be a minimum of three periodical tests preferably one in each term in theory and practical of each subject in an academic year. The average marks of the best of the two tests will be calculated and reduced to 20 in theory and 15 in practicals. The marks of IA shall be
communicated to the university at least 15 days before the commencement of the university examination. The university shall have access to the records of such periodical tests.

The marks of the internal assessment must be displayed on the notice board of the respective colleges within a fortnight from the date the test is held.

If a candidate is absent for any one of the tests due to genuine and satisfactory reasons, such a candidate may be given a re-test. Within a fortnight

5. **Schedule of Examination:**

The university shall conduct two examinations annually at an interval of not less than 4 to 6 months as notified by the university from time to time. A candidate who satisfies the requirement of attendance, progress, and conduct as stipulated by the university shall be eligible to appear for the university examination. Certificate to that effect shall be produced from the head of the institution along with the application for examination and the prescribed fee.

A candidate has to register for all the subjects of a year when he/she appears for the examination of that year for the first time.

6. **Scheme of Examination**

There shall be three examinations, one each at the end of I, II, and III year. The examination for both main and subsidiary subjects for all courses in allied health sciences shall be common in the first year. Distribution of subjects and marks for 1st, 2nd, and 3rd year university examinations are shown in the Table - IV, V, and VI.

The University Examination shall consist of:

- Written Examination
- Practical

The University Examination for 1st Year shall consist of only Theory Examination in 5 papers and there shall be no University practical examination.

Number Of Theory Papers For Written Examinations In 2nd & 3rd Year Consists of

- 2 Papers In The 2nd Year
- 2 Papers In The 3rd Year.

Practical Examination:

One Practical Examination At The End 2nd Year And One Practical Examination At The End Of The 3rd Year.
TABLE - IV
Distribution of Subjects and marks for First Year University theory Examination

<table>
<thead>
<tr>
<th>A</th>
<th>Main Subjects*</th>
<th>Written Paper</th>
<th>I.A</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>Marks</td>
<td>Marks</td>
</tr>
<tr>
<td>1.</td>
<td>Basic Anatomy</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>[Including Histology]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Physiology</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>Biochemistry</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Pathology</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>Microbiology</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Subsidiary Subject**</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>English</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>Kannada</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>Health Care</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: *IA = Internal Assessment

Main Subjects Shall Have University Examination. There Shall Be No University Practicals Examination.

** Subsidiary Subjects: Examination For Subsidiary Subjects Shall Be Conducted By Respective Colleges.

TABLE - V. Distribution of Subjects And Marks For Second Year Examination.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subjects</th>
<th>Theory</th>
<th>Viva voca</th>
<th>I.A</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>I.A</th>
<th>Sub Total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Sec A:- Physics of Radiology. Sec B:- Radiation Physics & Medical Physics</td>
<td>Theory</td>
<td>I.A</td>
<td>Sub Total</td>
<td>Practicals</td>
<td>I.A</td>
<td>Sub Total</td>
<td>Grand Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiographic Photography and Image Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Distribution of Subsidiary Subjects and marks for Second Year Examination

<table>
<thead>
<tr>
<th>B</th>
<th>Subsidiary Subject**</th>
<th>Duration</th>
<th>Marks</th>
<th>I.A Theory Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sociology</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>Constitution of India</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Environmental Science & Health</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Subsidiary subjects: Examination for subsidiary subjects shall be conducted by respective colleges.

TABLE - VI

Distribution of Subjects and marks for Third Year Examination.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Subject</th>
<th>Theory</th>
<th>I.A</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>I.A</th>
<th>Sub Total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Radiotherapy-Part-I A Radiation Physics</td>
<td>60</td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>Radiotherapy-part-I B Principles and Practice of Radiotherapy</td>
<td>30</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sec A: Diagnostic work up treatment principles and RT-techniques.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sec B: Psychosocial management, Health & safety, Qualitative & Quantitative methods of research, Medical Legal & Ethical aspects and recent advances.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Subsidiary Subjects and marks for Third Year Examination

<table>
<thead>
<tr>
<th>B</th>
<th>Subsidiary Subject**</th>
<th>Duration</th>
<th>Marks</th>
<th>I .A Theory Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ethics, Database Management</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>Research & Biostatistics</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Computer application</td>
<td>3 hours</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

**Subsidiary subjects: Examination for subsidiary subjects shall be conducted by respective colleges

11. Pass criteria

11.1. First year examination.

a. Main Subjects: A candidate is declared to have passed in a subject, if he/she secures, 50% of marks in University Theory exam and Internal assessment added together.

b. Subsidiary Subjects: The minimum prescribed marks for a pass in subsidiary subject shall be 35% of the maximum marks prescribed for a subject. The marks obtained in the subsidiary subjects shall be communicated to the University before the commencement of the University examination.

11.2. Second and Third year Examination

A candidate is declared to have passed the Examination in a subject if he/she secures 50% of the marks in theory and 50% in practical separately. For a pass in Theory, a candidate has to secure a minimum of 40% marks in the University conducted written examination, and 50% in aggregate in the University conducted written examination, internal assessment and Viva-Voce added together and for pass in Practical, a candidate has to secure a minimum of 40% marks in the university conducted Practical/Clinical examination and 50% in aggregate i.e. University conducted Practical/Clinical and Internal Assessment.

Practicals for second and third year: If a candidate passes in practical examination in second or third year but fails in one or more theory papers such candidates are exempted from reappearing for practical but they have to appear in the subsequent examination for the theory paper in which she/he has failed OR vice versa.

b. Subsidiary Subjects: The minimum prescribed marks for a pass in subsidiary subject shall be 35% of the maximum marks prescribed for subject. The marks obtained in the subsidiary subjects shall be communicated to the University before the commencement of the University examination.
12. Carry over benefit

12.1 First year examination:

A candidate shall appear for all the subjects of that particular year in the University examinations to avail this benefit. A candidate who fails in any two of the five main subjects and English in the first year shall be permitted to carry over these subjects to second year. However, he/she must pass the carry over subjects before appearing for second year examination.

12.2 Second year examination:

A candidate is permitted to carry over any one subject of the second year to the third year but shall pass this subject before appearing for the third year examination.

A candidate is permitted to join third year provided he/she has appeared for all the subjects of second year and availed the carry over benefit for one subject in the second year.

13. Declaration Of Class

A candidate having appeared in all the subjects in the same examination and passed that examination in the first attempt and secures 75% of marks or more of grand total marks prescribed will be declared to have passed the examination with Distinction.

a. A candidate having appeared in all subjects in the same examination and passed that examination in the first attempt and secures 60% of marks or more but less than 75% of grand total marks prescribed will be declared to have passed the examination in First Class.

b. A candidate having appeared in all the subjects in the same examination and passed that examination in the first attempt and secures 50% of marks or more but less than 60% of grand total marks prescribed will be declared to have passed the examination in Second Class.

c. A candidate passing the university examination in more than one attempt shall be placed in Pass class irrespective of the percentage of marks secured by him/her in the examination.

d. The marks obtained by a candidate in the subsidiary subjects shall not be considered for award of Class or Rank.

[Please note fraction of marks should not be rounded off clauses (a), (b) and (c)]

14. Eligibility for the award of Degree:

A candidate shall have passed in all the subjects of first, second and third year to be eligible for award of degree and completed one year internship with pass criteria in outgoing clinical assessment exams.
THEORY

SUBJECTS HAVING MAXIMUM MARKS = 100

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No of Questions</th>
<th>Marks For Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>3 (2x10)</td>
<td>10</td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>12 (10x5)</td>
<td>05</td>
</tr>
<tr>
<td>SHORT ANSWER TYPE</td>
<td>12 (10x3)</td>
<td>03</td>
</tr>
</tbody>
</table>

SUBJECTS HAVING MAXIMUM MARKS = 80

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No of Questions</th>
<th>Marks For Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>3 (2x10)</td>
<td>10</td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>8 (6x5)</td>
<td>05</td>
</tr>
<tr>
<td>SHORT ANSWER TYPE</td>
<td>12 (10x3)</td>
<td>03</td>
</tr>
</tbody>
</table>

SUBJECTS HAVING MAXIMUM MARKS = 60

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No of Questions</th>
<th>Marks For Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>3 (2x10)</td>
<td>10</td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>7 (5x5)</td>
<td>05</td>
</tr>
<tr>
<td>SHORT ANSWER TYPE</td>
<td>7 (5x3)</td>
<td>03</td>
</tr>
</tbody>
</table>

SUBJECTS HAVING MAXIMUM MARKS = 50

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>No of Questions</th>
<th>Marks For Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>3 (2x10)</td>
<td>10</td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>5 (3x5)</td>
<td>05</td>
</tr>
<tr>
<td>SHORT ANSWER TYPE</td>
<td>7 (5x3)</td>
<td>03</td>
</tr>
</tbody>
</table>
GOALS AND GENERAL OBJECTIVES OF THE EDUCATION PROGRAM

GENERAL OBJECTIVES

1. Practice the specialty concerned ethically and in step with the principles of primary health care.
2. Demonstrate sufficient understanding of the basic sciences relevant to the concerned specialty.
3. Observe and discuss measures for the Radiation Safety and Protection in radiotherapy.
4. Demonstrate empathy and humane approach towards patients and their families and exhibit interpersonal behavior in accordance with the societal norms and expectations.
5. Develop skills as a self-directed learner, recognize continuing educational needs; select and use appropriate learning resources.

ROLE OF THE RTT (The identification of the roles expected of an RTT).
In broad terms these roles are:

Treatment preparation

a. Awareness of diagnostic modalities relevant to oncology
b. Planning/Dosimetry
c. Localization/Simulation
d. Hand and computer planning
 Single field (skin, metastasis)
 Parallel opposed (palliative and radical intent)
e. Mould room techniques and practice
f. Treatment calculations
g. Quality control and Quality Assurance

Treatment equipment
Knowledge of the characteristics of the equipment and the appropriate selection of equipment for common malignancies.
a. Superficial
b. Orthovoltage
c. Cobalt-60
d. Linear accelerator
e. Brachytherapy (LDR and HDR)
f. 3DCRT/SRS/SRT/IMRT
Treatment set-up and delivery

a. Single field (skin, metastasis)
b. Parallel opposed (palliative and radical intent)
c. Multiple planned fields
d. Simple 2 field plan
e. Box (Ca Cx)
f. 3-field with wedge (Bladder)
g. Complex planned treatment
h. 3-D
i. Mixed modality (head and neck, breast)
j. Detecting abnormal equipment displays that may indicate a malfunction.
k. Intervening in case of an accident or emergency.

Patient care

a. Before radiation therapy
b. Awareness of patient management before attending radiation
c. During radiation therapy
d. Treatment preparation
e. Monitoring the patient during treatment
f. Detecting and communicating to the physician any unusual patient reactions
g. After radiation therapy
h. Awareness of patient management after completion of treatment (follow-up)

In summary
The RTT will need:

- Ability and skills to work in a team
- Technological aptitude
- Academic knowledge
- Technical skills, knowledge and ability
- Knowledge of radiation protection
- Professionalism
- Communication skills
- Computer skills
- Problem solving ability
- Continued Professional Development (CPD)

STATEMENT OF THE COMPETENCIES

Keeping in view the general objectives of the training, each discipline shall aim at development of specific competencies, which shall be defined and spelt out in clear terms. Each department shall produce a statement and bring it to the notice of the trainees in the beginning of the program so that he or she can direct the efforts towards the attainment of these competencies.
COMPONENTS OF THE CURRICULUM
The major components of the curriculum shall be:

- Theoretical knowledge
- Practical/clinical skills
- Practical Training / Quality Assurance.
- Radiation Safety and Protection
- Attitudes, including communication.
- Training in research methodology.

B.Sc. RADIOThERAPY TECHNOLOGISTS (RTT)

INTRODUCTION

Radiotherapy involves the use of ionizing radiation to treat disease and is one of the major modalities used in the management of cancer. The emphasis is on teamwork and therapeutic radiographers work closely with doctors, medical physicists and nurses to provide the optimum care for patients.

Modern radiotherapy utilizes highly sophisticated technology and the Radiotherapy Technologist (RTT) need to have an interest in and understanding of the technical aspects of treatment planning and delivery combined with good communication and caring skills. Other important qualities are the ability to work accurately and efficiently, often under pressure, and a concern to continuously improve and develop the service offered to the cancer patients.

The expected outcome is an improvement in the professional standard of technical, clinical and psychological care given to the patient to whom a course of radiation is administered. The program is to ensure that the level of expertise necessary for the profession is achieved to facilitate an overall progression towards the desired goals.

GOALS:

The Radiotherapy Technology Course is a three year integrated program consisting of alternating blocks of academic learning and practical training in order to integrate theory with practice. At the end of training program the candidates should have acquired sufficient knowledge, expertise & understanding of the functioning of human body, the disease process, Basic & Radiation Therapy Physics, Radiobiology, Basic concepts in Oncology, knowledge of various malignant diseases & its management particularly with Radiotherapy. The technologist should be capable of using wide range of Radiation Therapy Equipment's (Teletherapy, Brachytherapy, Dosimetry, Treatment simulation, Treatment planning) including Mouldroom and Radiation protection.

OBJECTIVES:

The following objectives are laid out to achieve the goals of the course. These objectives are to be achieved by the time the candidate completes the course.
Knowledge:

- To acquire basic knowledge of Human Anatomy, Physiology, Surface marking,
- Cancer aetiology, Pathology, Natural history, Lymphatics
- To understand the Basics of Oncology
- Multimodality management i.e., Radiation Therapy, Surgery, Chemotherapy,
- Common malignancies in the country and their management,
- Basic concepts in Radiation Oncology, Radiation therapy Physics & radiation Biology
- Radiotherapy & Treatment using Teletherapy & Brachytherapy Machines,
- TPS, Mould Room & Simulation
- Structure, Functioning, Maintenance, Quality assurance,
- Update oneself by self-study and by attending courses, Workshops, Conferences and Seminars relevant to the specialty.
- Teach and guide his team, colleagues and other students.
- Undertake audit, use information technology tools to carry out both clinical related and technology related work relevant to Radiotherapy treatment execution.

Skills:

- Handling of various Radiotherapy and X-ray equipment’s,
- Handling of patients:
- Acquire skills relevant to Treatment Planning & Simulation, Mould Room techniques and its practical applications,
- Radiotherapy safety and protection, Quality assurance checks,
- Develop communications skills for better patient care and interpersonal relationships.

Human Values, Ethics and Communication Abilities:

- Adopt ethical principles in all aspects of his/her patient care.
- Professional honesty and integrity are to be fostered.
- Care is to be delivered irrespective of the social status, caste, creed or religion of the patient.
- Apply high moral and ethical standards while carrying out their duties.
- Be humble and accept the limitations in his knowledge and skill and to ask for help from the Radiation Oncologists, Radiation Physicists, or from colleagues when needed.
- Respect patient’s rights and privileges.
I YEAR RADIOTHERAPY TECHNOLOGY

ANATOMY

No. of theory classes: 70 hours
No. of practical classes: 20 hours

Chapter 1
Introduction:
Theory:
- Definition of anatomy and its divisions
- Terms of location, positions and planes
- Epithelium-definition, classification, describe with examples, function
- Glands- classification, describe serous, mucous & mixed glands with examples
- Basic tissues – classification with examples

Practical:
- Histology of types of epithelium
- Histology of serous, mucous & mixed salivary gland

Chapter 2
Connective tissue:
Theory:
- Cartilage – types with example & histology theory
- Bone – Classification, names of bone cells, parts of long bone, microscopy of compact
- bone, names of all bones, vertebral column, intervertebral disc, fontanelles of fetal skull
- Joints – Classification of joints with examples, synovial joint (in detail for radiology)
- Muscular system: Classification of muscular tissue & histology
- Names of muscles of the body

Practical:
- Histology of the 3 types of cartilage
- Histology of compact bone (TS & LS)
- Histology of skeletal (TS & LS) & cardiac muscle
- Demo of all bones showing parts, radiographs of normal bones & joints
- Demonstration of important muscles of the body
3. Cardiovascular system:
Theory:
- Heart-size, location, chambers, exterior & interior, pericardium
- Blood supply of heart
- Systemic & pulmonary circulation
• Branches of aorta, common carotid artery, subclavian artery, axillary artery, brachial artery, superficial palmar arch, femoral artery, internal iliac artery
• Inferior vena cava, portal vein, portosystemic anastomosis, Great saphenous vein, Dural venous sinuses
• Lymphatic system- cisterna chyli & thoracic duct, Histology of lymphatic tissues, Names of regional lymphatics, axillary and inguinal lymph nodes in brief

Practical:
• Demonstration of heart and vessels in the body
• Histology of large artery & vein, medium sized artery & vein
• Histology of lymph node, spleen, tonsil & thymus
• Radiology: Normal chest radiograph showing heart shadows

4. Gastro-intestinal system

Theory:
• Parts of GIT: Oral cavity (lip, tongue (with histology), tonsil, dentition, pharynx, salivary glands, Waldeyer’s ring), Oesophagus, stomach, small and large intestine, liver, gall bladder, pancreas, spleen, peritoneum & reflections

Practical:
• Demonstration of parts of GIT
• Radiographs of abdomen

5. Respiratory system

• Parts of RS: nose, nasal cavity, larynx, trachea, lungs, bronchopulmonary segments, diaphragm
• Histology of trachea, lung and pleura
• Names of paranasal air sinuses

Practical:
• Demonstration of parts of respiratory system.
• Normal radiographs of chest, X-ray paranasal sinuses
• Histology of lung and trachea

6. Urinary system

Theory:
• Kidney, ureter, urinary bladder, male and female urethra
• Histology of kidney, ureter and urinary bladder

Practical:
• Demonstration of parts of urinary system
• Histology of kidney, ureter, urinary bladder
• Radiographs of abdomen-IVP, retrograde cystogram
7. Reproductive system
Theory:
- Parts of male reproductive system, testis, vas deferens, epididymis, prostate (gross & histology)
- Parts of female reproductive system, uterus, fallopian tubes, ovary (gross & histology)
- Mammary gland – gross

Practical:
- Demonstration of section of male and female pelvis with organs in situ
- Histology of testis, vas deferens, epididymis, prostate, uterus, fallopian tubes, ovary
- Radiographs of pelvis – hysterosalpingogram

8. Endocrine glands
Theory:
- Names of all endocrine glands in detail on pituitary gland, thyroid gland & suprarenal gland – (gross & histology)

Practical:
- Demonstration of the glands
- Histology of pituitary, thyroid, parathyroid, suprarenal glands

9. Nervous system
Theory:
- Neuron & Classification of NS
- Cerebrum, cerebellum, midbrain, pons, medulla oblongata, spinal cord with spinal nerve

 (gross & histology) Meninges, Ventricles & cerebrospinal fluid, Names of basal nuclei
- Blood supply of brain
- Cranial nerves
- Sympathetic trunk & names of parasympathetic ganglia

Practical:
- Histology of peripheral nerve & optic nerve
- Demonstration of all plexuses and nerves in the body
- Demonstration of all part of brain
- Histology of cerebrum, cerebellum, spinal cord

10. Sensory organs
Theory:
- Skin: Skin-histology & Appendages of skin
- Eye: Parts of eye & lacrimal apparatus, Extra-ocular muscles & nerve supply
• Ear: parts of ear- external, middle and inner ear and contents

Practical:
• Histology of thin and thick skin
• Demonstration and histology of eyeball
• Histology of cornea & retina

11. Embryology:
Theory:
• Spermatogenesis & oogenesis
• Ovulation, fertilization
• Fetal circulation
• Placenta
INTERNAL ASSESSMENT

Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in
Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 80 marks. Distribution of
type of questions and marks for Anatomy shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 80 (for first year B.Sc)</th>
<th>Type of Questions</th>
<th>NO. of questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Essay Type</td>
<td>3 (2 x 10)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Short Essay Type</td>
<td>8 (6 x 5)</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Short Answer Type</td>
<td>12 (10 x 3)</td>
<td>03</td>
</tr>
</tbody>
</table>

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Viva</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>*</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

REFERENCE BOOKS:
1. William Davis (P) understanding Human Anatomy and Physiology – McGraw Hill
2. Chaursia- A Text Book of Anatomy
3. T. S. Ranganathan- A Text Book of Human Anatomy
4. Fattana, Human Anatomy (Description and applied)- Saunder’s & C P Prism Publishers, Bangalore
5. ESTER. M. Grishcimer- Physiology & Anatomy with Practical Considerations, J. P. Lippin Cott. Philadelphia
PHYSIOLOGY

Theory 70 hours
Practical 20 hours

1. General Physiology
Introduction to cell physiology, transport across cell membrane
Homeostasis, Body Fluid compartment & measurement

2. Blood
Introduction - composition and function of blood
Plasma, proteins, types and functions
Red blood cells - erythropoiesis, stages of differentiation, factors affecting it, function,
normal count, physiological variation.
Hemoglobin - function, concentration, types & methods of Hb estimation, fate of
hemoglobin
Jaundice - types Anaemia - types
ESR, PCV, osmotic fragility & blood indices
WBC - morphology, production, functions, normal count, differential count, variation,
variation Immunity (in brief)
Platelets - origin, morphology, normal count, function-Platelet plug ,bleeding disorder
Haemostasis - definition, normal haemostasis, clotting factors, mechanism of clotting,
anticoagulants disorders of clotting factors.
Blood group - ABO & Rho system, Rh incompatibility blood typing ,cross matching, hazards
of mismatched blood transfusion
RES, spleen and lymph

3. Nerve-Muscle
Neuron structure, types, neuroglia-types, nerve fibre classification, properties of nerve
fibres, RMP, action potential, wallerian degeneration
NMJ, blockers, Myasthenia gravis
Classification of muscle, structure of skeletal muscle, sarcomere, contractile proteins
Excitation contraction coupling, mechanism of muscle contraction, types of contraction
Motor unit, fatigue, rigor mortis Smooth muscle

4. Respiratory system
Physiological anatomy of respiratory system, muscles of respiration, respiratory & non
respiratory functions of lungs, dead space
Mechanics of breathing, intrapulmonary & pleural pressures
Compliance, Surfactant, Hyaline membrane disease
Lung volumes and capacities
Respiratory membrane , transport of O₂ & CO₂
Chemical regulation of respiration
Neural regulation of respiration
Hypoxia, Acclamatization,
Dysbarism. Artificial respiration
Definition-Periodic breathing ,dyspnoea, apnoea, asphyxia, cyanosis

5. Cardiovascular system
Introduction to CVS & general principles of circulation
Properties of Cardiac muscle
Cardiac cycle, heart sounds, Pulse
Cardiac output, factors and measurement
Heart rate
BP-factors, measurement, Short term regulation
Intermediate and long term regulation of BP
ECG uses and significance, normal waveform, heart block
Coronary circulation, Cutaneous circulation-Triple response
Shock
Effects of exercise on CVS and Respiratory system

6. Renal system, Skin and body temperature
Kidneys- functions, structure of nephron, type, juxtaglomerular apparatus-structure and function, non-excretory functions of kidney
Glomerular filtration rate (GFR)- Definition, normal value, factors affecting GFR
Tubular reabsorption - sites, substance reabsorbed, mechanisms of reabsorption
Tubular secretion- sites, substance secreted, mechanisms of reabsorption
Counter current mechanism of concentration of urine
Obligatory and Facultative reabsorption of water
Micturition reflex, Diuretics
Artificial kidney, renal function tests-clearance tests
Skin -structure and function, body temperature measurement, physiological variation,
Regulation of body Temperature by physical and nervous mechanisms-Role of Hypothalamus
Hypothermia and fever

7. Digestive system
Physiological anatomy, Enteric nervous system & functions of GIT
Saliva- composition, regulation, disorder.
Deglutition- stages & disorders
Stomach-functions, composition and regulation of gastric juice
Gastric motility, MMC, vomiting reflex.
Pancreas- function, composition and regulation of pancreatic juice
Liver & gall bladder-functions, bile- composition, secretion and regulation
Small intestine- Succus entericus-composition, functions & movements
Large intestine- functions, movements and defecation reflex
Digestion & absorption of Carbohydrates, fats and proteins

8. Endocrine system
Classification of Endocrine glands & their hormones & properties-chemistry and receptor, feedback mechanisms of hormone regulation.
Anterior pituitary hormones- secretion, functions, disorders
Posterior pituitary hormones- secretion, functions, disorders
Thyroid hormones- secretion, functions, disorders
Parathyroid hormones- secretion, functions, disorders
Calcium homeostasis & disorders
Pancreatic hormones, -Insulin and Glucagon- secretion, functions, disorders
Adrenal cortex- Glucocorticoids & Mineralocorticoids, Androgen - secretion, functions, disorders
Adrenal medulla- secretion, functions, disorders
Thymus & Pineal gland

9. Reproductive system
Introduction to reproductive system, sex differentiation & Puberty
Male reproductive system, functions of testosterone & Spermatogenesis
Female reproductive system, functions of Estrogen, Progesterone, Oogenesis
Ovulation & Menstrual cycle
10. Central nervous system
Introduction to CNS, Sensory receptors classification, properties
Synapse—classification, properties
Sensory pathways: Anterior spino thalamic tract and Posterior column pathway
Lateral spino thalamic tract, Types of pain, Referred pain, Thalamus; nuclei and function
Classification of reflexes, Monosynaptic reflex- Stretch reflex, muscle spindle, inverse stretch reflex. Polysynaptic reflex-Withdrawal reflex
Motor pathways : Pyramidal pathway and functions, UMNL, LMNL
Cerebral cortex (Sensory and motor)-functions, Medulla and Pons-functions
Cerebellum—functions, disorders
Basal ganglia-functions, disorders
Hypothalamus and Limbic system-functions
CSF, lumbar puncture
Sleep, EEG,
Autonomic Nervous System - Sympathetic and parasympathetic distribution and functions

11. Special senses
Vision —Functional anatomy of eye, visual pathway, lesion
Refractive errors, color vision
Audition – Physiological anatomy of ear, Mechanism of hearing, auditory pathway, deafness
Olfaction –modalities, receptor, function, abnormalities
Gustation-modalities, receptor, function, taste pathway, abnormalities

Practicals
Blood pressure Recording
Auscultation for Heart Sounds
Artificial Respiration
Determination of vital capacity

INTERNAL ASSESSMENT
Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 80 marks. Distribution of type of questions and marks for Physiology shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>NO. of questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essay Type</td>
<td>3 (2 x 10)</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay Type</td>
<td>8 (6 x 5)</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer Type</td>
<td>12 (10 x 3)</td>
<td>03</td>
</tr>
</tbody>
</table>

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Viva Voce</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

80 - 20 100 * | | | 100 |
REFERENCE BOOKS:
Chatterjee (CC) Human Physiology Latest Ed. Vol. 1, Medical Allied Agency
Choudhari (Sujith K) Concise Medical Physiology Latest Ed. New Central Book
Ganong (William F) Review of Medical Physiology. Latest Ed. Appleton

BIOCHEMISTRY

1. Carbohydrate Chemistry [3 hours]
 - Classification (Definition/ examples for each class)
 - Monosaccharides (classification depending upon number of carbon atoms and functional group with examples)
 - Disaccharides (Sucrose/ lactose/ maltose and their composition)
 - Polysaccharides :
 a) Homopolysaccharides (Structure of starch and glycogen)
 b) Heteropolysaccharides (Functions)

2. Lipid Chemistry [3 hours]
 - Definition of lipids
 - Functions of lipids in the body
 - Classification of lipids (subclasses with examples)
 - Definition and Classification of fatty acids
 - Essential fatty acids
 - Phospholipids and their importance

3. Amino-acid and Protein Chemistry [3 hours]
 - General structure of D and L amino acids
 - Amino acids; Definition and Classification of amino acids with examples.
 - Peptides; definition & Biologically important peptides
 - Classification of Proteins based on composition, functions and shape (with examples)
 - Functions of amino acids and Proteins
4. Nucleotide and Nucleic acid Chemistry [3 hours]
 - Nucleosides & Nucleotides
 - Nucleic acid Definition & types
 - Composition & functions of DNA & RNA
 - Structure of DNA (Watson and Crick model)
 - Structure of tRNA, & functions of tRNA, rRNA, mRNA
 - Difference between DNA and RNA

5. Enzymes [5 hours]
 - Definition & Classification of Enzymes with example
 - Definitions of Active site, Cofactor (Coenzyme, Activator),
 - Proenzyme; Definition and examples (Pepsin & trypsin)

6. Digestion and Absorption [3 Hours]
 - General characteristics of digestion and absorption,
 - Digestion and absorption of carbohydrates, proteins and lipids.

7. Carbohydrate Metabolism [5 Hours]
 - Glycolysis ; Aerobic, Anaerobic, Definition , Site and subcellular site , Steps with all the enzymes and coenzymes at each step, mention the regulatory enzymes , Energetics,
 - Citric acid cycle; Pyruvate dehydrogenase complex (reaction and coenzymes) , Site and subcellular site , Reactions with all the enzymes and coenzymes ,Regulatory enzymes , Energetics
 - Significance of HMP Shunt pathway.
 - Hyperglycemic and hypoglycemic hormones
 - Blood Glucose Regulation.
 - Diabetes mellitus (definition, classification, signs and symptoms)
 - Glycogen metabolism and gluconeogenesis

8. Lipid Metabolism [4 Hours]
 - Introduction to lipid metabolism, Lipolysis
• Beta oxidation of fatty acids; Definition, Site and subcellular site, Activation of palmitic acid, Transport of activated palmitic acid into mitochondria, Reactions, Energetics.

• Name the different ketone bodies. Note on ketosis

9. **Amino acid and Protein Metabolism [3 Hours]**

• Introduction, transamination, deamination, Fate of ammonia, transport of ammonia,

• Urea cycle.

10. **Vitamins [5 Hours]**

• Definition and classification.

• RDA, sources, coenzyme forms, biochemical functions and disorders for the following water soluble vitamins: Thiamine, Niacin, Pyridoxine, Cobalamin, Folic acid, Ascorbic acid

• RDA, sources, coenzyme forms, biochemical functions and deficiency disorders for the following fat soluble vitamins; A and vitamin D

11. **Mineral Metabolism [3 Hours]**

• Name the macro/microminerals

• Iron: Sources, RDA, Functions and Disorders of deficiency and excess

• Calcium and phosphorus: Sources, RDA, functions, normal serum levels and hormones regulating their levels

12. **Nutrition [6 hours]**

• Balanced diet (Definition)

• Caloric value; Definition, Caloric values of carbohydrates, proteins and fats

• Total daily caloric requirements of an adult male and female,

• RDA (Definition, standard values for nutrients)

• Basal metabolic rate (BMR); Definition, Magnitude of BMR in men and women, Factors affecting BMR

• Thermic effect/SDA of food (Definition, values for major macronutrients)

• Carbohydrates; Daily dietary requirement. 2. Dietary fibers (Definition, functions, importance and their daily requirements)
• Proteins; Daily requirement, Biological value. a. Definition b. Protein used as a standard for this, Protein sources with high and low biological value, Mutual supplementation of proteins (Definition, examples).

• Fats; Daily requirement, Essential fatty acids (Definition, functions, daily requirement and deficiency manifestations), Saturated and unsaturated fatty acids (Definition, sources, examples).

• Malnutrition

13. Renal Function Tests [2 hours]
• Name the different tests to assess the kidney functions
• Explain Creatinine clearance & Inulin clearance
• Urinary acidification test

14. Radioactive Isotopes [1 hour]
• Definition, clinical applications
• Biological effects of radiations

15. Clinical Biochemistry [5 hours]
A. Definitions of acid, base, pH and pKa [1 hour]
B. Buffers • Definition [2 hours]
• Henderson Hasselbalch equation,
• Principal buffer systems in the ECF ICF and urine
• Bicarbonate and phosphate buffer systems (pKa value, normal ratio of base/acid in the plasma)
• Acidosis & Alkalosis (Definition, classification, causes and biochemical findings)
C. Normal serum levels and condition where they are altered [2 hour]
• Glucose, Protein, urea, uric acid, and creatinine
• Bilirubin, cholesterol
• Serum Electrolytes

16. Fundamental Chemistry (1 hour)
• Valency, Molecular weight & Equivalent weight of elements and compounds. Normality, Molarity, Molality.
17. Solutions: Definition, use, classification where appropriate, preparation and storage (5 hours)

- Stock and working solutions.
- Molar and Normal solutions of compounds and acids. (NaCl, NaOH, HCl, H2SO4, H3PO4, CH3COOH etc.)
- Preparation of percent solutions – w/w, v/v w/v (solids, liquids and acids). Conversion of a percent solution into a molar solution.
- Saturated and supersaturated solutions.
- Standard solutions. Technique for preparation of standard solutions and Storage. E.g: glucose, albumin etc.
- Dilutions- Diluting Normal, Molar and percent solutions. Preparing working standard from stock standard.

ASSIGNMENT TOPICS
1. Units of measurement
2. Hazards - Physical, Chemical, Biological
3. Arterial blood gas analysis
4. Responsibilities of Health care personnel
5. Biomedical waste management

Total theory hours = 70

PRACTICAL DEMONSTRATION [20 hours]
- Color Reactions of Carbohydrates & amino acids.
- Precipitation Reactions of proteins
- Colorimetry
- Estimation of Blood glucose Folin Wu and enzymatic method
- Estimation of Urea by DAM method

INTERNAL ASSESSMENT
- Theory-average of 2 exams conducted 20
- Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in
Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 80 marks. Distribution of type of questions and marks for Biochemistry I shall be as given under.

<table>
<thead>
<tr>
<th>SUBJECTS HAVING MAXIMUM MARKS= 80 (for first year B.Sc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Questions</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Essay Type</td>
</tr>
<tr>
<td>Short Essay Type</td>
</tr>
<tr>
<td>Short Answer Type</td>
</tr>
</tbody>
</table>

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Viva</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practice</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>*</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Text Book References
- Biochemistry – 3rd revised edition by U Sathyanarayana & U Chakrapani
- Textbook of Medical Biochemistry-6th Edition by MN Chatterjea & Rana Shinde
- Textbook of Medical Laboratory technology 2nd edition by Godkar and Godkar.
- Biochemistry-3rd edition by Pankaja Naik
- Medical Laboratory technology 6th edition by Ramnik Sood.
- Varley’s Practical Clinical Biochemistry, 4th, 5th and 6th editions

PATHOLOGY

Clinical Pathology, Hematology and Blood Banking
Theory-70 hours
Practicals-20 hours

I. Clinical Pathology- Theory
- Introduction to clinical pathology
- Collection, transport, preservation and processing of various clinical specimens
- Urine examination- collection and preservation, Physical, chemical and microscopic examination for abnormal constituents
- Examination of Body fluids
- Examination of Cerebrospinal fluid (CSF)
- Sputum examination
- Examination of feces

II. Hematology – Theory
- Introduction to hematology
- Normal constituents of Blood, their structure and functions
- Collection of Blood samples
- Various anticoagulants used in Hematology
- Hemoglobin estimation, different methods and normal values
- Packed cell volume
- Erythrocyte sedimentation rate
- Normal Haemostasis
- Bleeding time. Clotting time, prothrombin time, Activated partial Thromboplastin time

III. Blood Bank- Theory

- Introduction blood banking
- Blood group system
- Collection and processing of blood for transfusion
- Compatibility testing
- Blood transfusion reactions
IV General Pathology:

1. Cell injury:
 a. Definition, causes.
 b. Cellular adaptations – Hypertrophy, hyperplasia, atrophy and metaplasia.
 c. Types of cell injury – Reversible and irreversible; morphology of reversible injury.
 d. Necrosis – Definition and patterns of tissue necrosis.
 e. Intracellular accumulations – Lipids, cholesterol, proteins, glycogen and pigments; examples.
 f. Pathologic calcification – Types and examples.

2. Inflammation:
 a. Definition and signs of inflammation.
 b. Types – Acute and chronic inflammation.
 c. Acute inflammation – Causes, morphological patterns and outcome.
 d. Chronic inflammation – Causes, morphology and examples.
 e. Regeneration and repair – Mechanism of cutaneous wound healing.
 f. Factors affecting wound healing.

3. Hemodynamic disorders:
 g. Edema – Definition, pathogenesis and types: Renal, cardiac, pulmonary and cerebral.
 h. Difference between transudate and exudate.
 j. Thrombosis – Definition, mechanism of thrombus formation (Virchow’s triad) and fate of thrombus.
 k. Embolism – Definition and types: Thromboembolism, fat, air and amniotic fluid embolism.
 l. Infarction – Definition and examples.
4. **Immune system:**
 a. Autoimmune diseases – General features, enumerate systemic and organ specific autoimmune diseases.
 b. Systemic lupus erythematosus – Manifestations and diagnosis.

5. **Neoplasia:**
 c. Definition and nomenclature of tumors.
 d. Differences between benign and malignant neoplasms.
 e. Enumerate modes of carcinogenesis: Genes, physical, chemical and microbial agents of carcinogenesis.
 f. Modes of spread of tumors.
 g. Clinical aspects of neoplasia.
 h. Grading and staging of cancers.
 i. Laboratory diagnosis of cancer.

Practicals
1. Urine analysis- Physical, Chemical, Microscopic
2. Blood grouping and Rh typing
3. Hb estimation, packed cell volume (PCV), Erythrocyte Sedimentation rate (ESR)
4. Bleeding time and Clotting time

INTERNAL ASSESSMENT
Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practicals need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 80 marks. Distribution of type of questions and marks for Pathology I shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>NO. of questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essay Type</td>
<td>3 (2 x 10)</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay Type</td>
<td>8 (6 x 5)</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer Type</td>
<td>12 (10 x 3)</td>
<td>03</td>
</tr>
</tbody>
</table>
Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th></th>
<th>Practicals</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>Viva Voce</td>
<td>IA Sub Total</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>20 100</td>
<td>*</td>
</tr>
</tbody>
</table>

| | | | 100 |

REFERENCE BOOKS:

1. Culling Histopathology techniques
2. Bancroft Histopathology techniques
3. Koss- Cytology
4. Winifred Diagnostic cytopathology
5. Orell Cytopathology
6. Todd and Sanford- clinical diagnosis by Laboratory Medicine
7. Dacie and Lewis- Practical Hematology
9. Sathish Guptha , Short text book of Medical laboratory techniques for technicians
10. Sachdev K N. Clinical Pathology and Bacteriology, 8 th edi JP Bros, New Delhi, 1996

MICROBIOLOGY

Theory: 70 Hours
Practical's: 20 Hours

1. Introduction (6 hrs)

 History of Microbiology,
 Classification of microorganisms,
 Microscope (Different types and uses)
 Morphology of bacterial cell.

2. Growth and nutrition (6 hrs)

 Growth and Nutrition
 Multiplication of bacteria,
Culture media and Culture methods.

3. Sterilization and disinfection (6 hrs)
 Principles and use of equipments of sterilization,
 Chemicals used in disinfection

4. Biomedical waste management principle and practice

5. Immunology (8 hrs)
 Immunity (Innate and Acquired immunity)
 Antigen (Definition, types, factors of antigenicity)
 Antibody (Properties, Structures Classes of immunoglobulins)
 List Antigen antibody reactions.
 Vaccines
 Immunization schedule

6. Infection (5hrs)
 Definition, types and mode of transmission
 Hospital infections – causative agents, mode of transmission and prophylaxis
 Antimicrobial susceptibility testing

7. Systematic bacteriology (15 hrs)
 Disease caused and lab diagnosis of medically important bacteria.
 (Staphylococcus, Streptococcus, Gonococcus, Echerichia coli, Klebsiella, Proteus Salmonella, Shigella, Vibrio, Pseudomonas, Mycobacteria, Treponema,)
 (No need of classification, antigenic structure, virulence mechanism)

8. Parasitology (10hrs)
 Introduction to Parasitology
 List of medically important parasites and diseases
Lab diagnosis of parasitic infections

9. Virology (10 hrs)
 Introduction to virology
 List of medically important viruses and diseases
 HIV,
 Hepatitis,
 Rabies,
 Polio,
 Arboviruses (Chikungunya, Dengue, KFD,)
 Lab diagnosis of viral infections

9. Mycology (9 hrs)
 Introduction to Mycology
 List of medically important fungi and diseases
 (Candidiasis, Cryptococcosis, Dermatophytes, Aspergillosis and Mucor mycosis)
 Lab diagnosis of fungal infections

10. Automated techniques

PRACTICALS (20hrs)
 Compound Microscope
 Demonstration and sterilization of equipment’s
 Demonstration of commonly used culture media and media with growth
 Antibiotic susceptibility test
 Demonstration of common serological tests – widal, VDRL,
 Grams stain, Acid fast staining
 Stool exam for Helminthic ova
INTERNAL ASSESSMENT

Theory-average of 2 exams conducted 20
Practicals: record and lab work* 10

*There shall be no university practical examination and internal assessment marks secured in Practical need not be sent to the university.

SCHEME OF EXAMINATION THEORY
There shall be one theory paper of three hours duration carrying 80 marks. Distribution of type of questions and marks for Microbiology I shall be as given under.

<table>
<thead>
<tr>
<th>Type of Questions</th>
<th>NO. of questions</th>
<th>Marks for Each Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essay Type</td>
<td>3 (2 x 10)</td>
<td>10</td>
</tr>
<tr>
<td>Short Essay Type</td>
<td>8 (6 x 5)</td>
<td>05</td>
</tr>
<tr>
<td>Short Answer Type</td>
<td>12 (10 x 3)</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subjects Having Maximum Marks= 80 (for first year B.Sc)</th>
</tr>
</thead>
</table>

Distribution of Marks for University Theory and Practical Exam

<table>
<thead>
<tr>
<th>Theory</th>
<th>Viva Voce</th>
<th>IA</th>
<th>Sub Total</th>
<th>Practicals</th>
<th>IA</th>
<th>Sub Total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>20</td>
<td>100</td>
<td>*</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Reference Books-
1. Ananthanarayana & Panikar Medical Microbiology- University Press
2. Robert Cruckshank- Medical Microbiology- The Practice of Medical Microbiology
3. Chatterjee- Parasitology- Interpretation to Clinical Medicine
4. Rippon- Medical Mycology
5. Emmons- Medical Mycology
6. Basic Laboratory methods in Parasitology, J P Bros, New Delhi
7. Basic Laboratory procedures in clinical bacteriology, J P Bros, New Delhi
8. Medical Parasitology- Ajit Damle
9. Introduction to medical microbiology- Ananthanarayana- Orient Longman Pvt. Ltd
SUBSIDIARY SUBJECTS
ENGLISH
COURSE OUTLINE

COURSE DESCRIPTION: This course is designed to help the student acquire a good command and comprehension of the English language through individual papers and conferences.

BEHAVIOURAL OBJECTIVES:
The student at the end of training is able to
1. Read and comprehend English language
2. Speak and write grammatically correct English
3. Appreciates the value of English literature in personal and professional life.

UNIT - I: INTRODUCTION:
Study Techniques
Organisation of effective note taking and logical processes of analysis and synthesis
Use of the dictionary
Enlargement of vocabulary
Effective diction

UNIT - II: APPLIED GRAMMAR:
Correct usage
The structure of sentences
The structure of paragraphs
Enlargements of Vocabulary

UNIT - III: WRITTEN COMPOSITION:
Precise writing and summarizing
Writing of bibliography
Enlargement of Vocabulary

UNIT - IV: READING AND COMPREHENSION:
Review of selected materials and express oneself in one’s words.
Enlargement of Vocabulary.

UNIT - V: THE STUDY OF THE VARIOUS FORMS OF COMPOSITION:
Paragraph, Essay, Letter, Summary, Practice in writing

UNIT - VI: VERBAL COMMUNICATION:
Discussions and summarization, Debates, Oral reports, use in teaching

 Scheme of Examination
No Practical or Viva voce examination
This is a subsidiary subject, examination to be conducted by respective colleges. Marks required for a pass is 35%
REFERENCE
2. Wren and Martin - Grammar and Composition, 1989, Chanda & Co, Delhi
5. Journalism Made Simple D Wainwright
6. Writers Basic Bookself Series, Writers Digest series
7. Interviewing by Joan Clayton Platkon
HEALTH CARE

Teaching Hours : 40

Introduction to Health

- Definition of Health, Determinants of Health, Health Indicators of India, Health Team Concept.
- National Health Policy
- National Health Programmes (Briefly Objectives and scope)
- Population of India and Family welfare programme in India

Introduction to Nursing

- What is nursing? Nursing principles. Inter-Personnel relationships. Bandaging: Basic turns; Bandaging extremities; Triangular Bandages and their application.
- Nursing Position, Bed making, prone, lateral, dorsal, dorsal re-cumbent, Fowler’s positions, comfort measures, Aids and rest and sleep.
- Lifting And Transporting Patients: Lifting patients up in the bed. Transferring from bed to wheel chair. Transferring from bed to stretcher.
- Bed Side Management: Giving and taking Bed pan, Urinal: Observation of stools, urine. Observation of sputum, Understand use and care of catheters, enemagiving.
- Methods Of Giving Nourishment: Feeding, Tube feeding, drips, transfusion
- Care Of Rubber Goods
- Recording of body temperature, respiration and pulse,
- Simple aseptic technique, sterilization and disinfection.
- Surgical Dressing: Observation of dressing procedures

First Aid:

Syllabus as for Certificate Course of Red Cross Society of St. John’s Ambulance Brigade.
2nd Year - RADIOTHERAPY- PART-I A

FUNDAMENTAL PHYSICS :

Applied Mathematics :

• Elementary use of algebraic symbols and signs, Fractions & Decimals.
• Indices: Power of 10 simple equations, Logarithms.
• Fundamentals of Trigonometry
• Fundamentals of Geometry, Application of similar triangles in finding focal spot.
• Divergence from a point source.
• Graphical representation of a data - linear & semi log plot,
• Measurement of angles. Geometry of triangles,
• Proportion, Inverse square law, Elementary explanation of exponential law.

Electromagnetic Radiation, Atomic Structure and Radioactivity:

• Electromagnetic waves and their properties, Inverse square law
• The quantum theory of Radiation (Planck's concept of quanta, Photon and its characteristic properties),
• The electromagnetic spectrum, Fluorescence and Phosphorescence, Photoelectric emission, Photocell, Intensity and quality of electromagnetic radiation.
• The structure of the Atom: Nucleus, Atomic number (Z), Mass number (A), Ionization & Excitation, Isotopes, And the Periodic Table.
• Radioactivity, Properties of alpha, beta, gamma radiation, Radioactive transformation process (Radioactive displacement law), Radioactive decay (Radioactive disintegration law), decay constant, half-life, Units of Radioactivity
• Radioactive nuclides in medicine
• Radioactive disintegration process and radiation emission and daughter products.
• Properties of radium and its daughter elements.
- Radioactive equilibrium.
- Production of artificial radioactive isotopes.
- The principles of the nuclear reactor.
- The Curie and specific gamma ray emission.

Fundamental of Electricity (Basic of Electronics):

- Electric charges and units of electric charge, Coulomb's law, Electric induction, electric potential & potential difference, Capacitance and Capacitors, Resistance.
- Conductors, Insulators and Semiconductors, Electric current, Ohm's law & Kirchoff's law, Circuit laws (Combination of Potential difference in series and parallel, meters, Electrical energy & Power, heating effect of a current.
- The magnetic effects of an electric current (Electromagnetism), electromagnetic induction, Mutual induction and Self-induction.
- Alternating current, The A.C. transformer theory, and construction, Types of transformers its practical aspects, Transformer losses and regulation and rating, Types of transformers used in X-ray equipment.
- Thermionic emission. The vacuum diode, Variation of anode current with anode voltage and filament temperature in the vacuum diode, the effect of gas in the diode, the thermionic gas diode. Meaning of rectification (full wave & half wave rectification).
- Principles of semiconductors, p-n junction diode, High voltage rectifier circuits (self-rectifying circuit, Half-wave pulsating voltage circuit, Full-wave pulsating voltage circuits, shockproofing. Advantages of semiconductor devices over thermionic devices.

X-rays (Basics of Radiation Physics):

- Conductivity of electricity through gases at low pressure, Cathode rays - production and properties. Sources of electrons (Discharge through gases, Thermionic emission and photoelectric emission), Discovery of an electron, Concept of electron volt.
- Discovery of X-rays, Production & properties of X-rays. Bremstralung, Factors influencing the intensity and quality of X-rays, Construction and working of Modern X-ray tube (fixed anode and rotatory anode tubes), The physics of X-spectra i.e., the spectrum of radiation from an X-ray tube (Continuous spectrum and line or characteristic spectrum), Factors upon which the X-ray emission depends, Soft and Hard X-rays, Distribution of X-rays in space, The diagnostic X-ray tubes (inserts and shields), filament design, anode design (fixed and rotatory), methods of cooling, Basic X-ray Circuit. Linear accelerator - Transmission Type Target.
- Fine focus and large focus. Importance of Focal spot. Lione focus principle and shape of the anode surface, Anode heal effect.

- Basic interactions between X-rays and matter: Coherent scattering, Photoelectric effect, Compton scattering, Pair production and Photodisintegration, Attenuation and absorption, Reduction in intensity due to absorption and attenuation and the inverse square law (Exponential formula), Filtration, Attenuation coefficients and half value layer. Energy absorbed from X-rays, Factors affecting transmission of a homogenous beam through an object (geometry, thickness, wavelength of beam, composition of an object), Transmission of a heterogeneous X-rays beam,

- Transmission of X-rays through body tissues: Relative amount of scattered radiation in an X-ray beam during its passage through a patient. The practical aspects of X-ray absorption and transmission in body tissues. The physics of the radiograph. The basic of the X-ray measurements,

- The units of Exposure (Roentgen) and Absorbed dose (gray) and their simple principles of dosimeters. The fluorescent effect of X-rays. The photographic film as a dosimeter, X-ray quality specification and measurement, Kilo voltage peak, half value thickness. Routine methods of checking quality. Definition of KERMA.

- Dosimetric quantities (mean energy imparted, the specific energy, exposure and exposure rate, absorbed dose and absorbed dose rate, concept of karma,

- Protection quantities (dose equivalent and effective dose equivalent) and Definition of Rem & Sievert.

- Linear Energy Transfer (LET) - Low & High LET Radiation.

Scheme of Examination

Theory

There shall be one theory paper of three hours duration carrying 60 marks. Distribution of type of questions and marks for Radiotherapy Part I A shall be as given under.

<table>
<thead>
<tr>
<th>TYPE OF QUESTION</th>
<th>NUMBER OF QUESTIONS</th>
<th>MARKS</th>
<th>SUB-TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>3 questions to attempt 2 (10 marks each)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>7 questions to attempt 5 (5 marks each)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>SHORT ANSWERTYPE</td>
<td>7 questions to attempt 5 (5 marks each)</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL MARKS</td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
2nd Year - RADIOTHERAPY-PART- I B

SECTION-A

A. RADIATION BIOLOGY
 • The Physics and Chemistry of Radiation Absorption
 • DNA strand breaks and chromosomal aberrations
 • Cell Survival curves
 • Dose response relationship for normal tissues
 • Oxygen Effect and reoxygenation
 • Linear Energy transfer and Relative Biologic Effectiveness
 • Time, Dose and Fractionation in Radiotherapy
 • New Radiation Modalities
 • Acute Effects of Total Body Irradiation
 • Radiation Carcinogenesis, Hereditary Effects,
 Effects on Embryo and Foetus, Catractogenesis
 • Radiation Protection
 • The Cell cycle, effects of radiation on the normal cell and abnormal cell.
 • Radio sensitivity of normal and tumours cells,

B. APPLIED ANATOMY & PATHOLOGY
 Tumours, Definition, formation of tumours, characteristics of benign and malignant tumours, spread of
tumours. Types of benign tumours, Types of malignant tumours
 • Epidemiology
 • Aetiology
 • Carcinogenesis
 • Characteristic of neoplasia (Natural History)
 • Histological classification of neoplasia
 • Spread of neoplasia
 • Staging and grading systems

PATHOLOGY OF COMMON MALIGNANT DISEASE OF INDIVIDUAL SITES
(in brief)
 • Skin cancer
 • Head and neck tumours
 • Brain tumours
 • GI tract tumors (oesophagus, rectum, and anus)
 • Lungcancer
 • Lymphomas
 • Breast cancer
 • Gynecological cancers
 • Prostate cancer
 • Bladder cancer
- Seminoma
- Pediatric Tumours and others

SECTION-B

PRINCIPLES OF RADIOTHERAPY:

- Basics of Oncology: Multidisciplinary approach to the management of the Cancer Patient: -
 Radiation Therapy, Surgery and Chemotherapy.
- Development of neoplasia within the patient
- Clinical signs and symptoms of neoplasia,
- Physical effects of neoplasia on the body
- Staging of Cancer (TNM classification).
- External Beam Therapy & Brachytherapy: Rationale, Preparation of Patient, Techniques,
- Dose, Volume, Time, Fractionation, Simulation, Reduplication of Treatment, Results, Survival.
- Altered Fractionation Schedules
- Acute and Late Effects of Radiation Therapy
- Care & assistance during Sedation / Anesthesia
- Physical effects of radiotherapy, chemotherapy, surgery and other treatments, in combination and alone on the body.
- Prevention and treatment of the acute side effects of radiotherapy and associated treatments
- Complications associated with cancer and its treatment, Causes of death

Scheme of Examination Theory

There shall be one theory paper with two sections of three hours duration carrying 60 marks. Distribution of type of questions and marks for Radiotherapy Part IB (Sec A & B) shall be as given under.

<table>
<thead>
<tr>
<th>TYPE OF QUESTION</th>
<th>NUMBER OF QUESTIONS</th>
<th>MARKS</th>
<th>SUB-TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>Section A - 2 questions to attempt 6 questions to attempt 4</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>Section A - 3 questions to attempt 2 12 questions to attempt 10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>SHORT ANSWER TYPE</td>
<td>Section A - 6 questions to attempt 5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL MARKS</td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

PRACTICALS:

RADIOTherAPY - 1.
PRACTICE OF RADIATION THERAPY TECHNIQUES

Note: (E) Denotes Practical Prescribed in University Examinations.

1. Mould Room (E)
 a. Equipments
 b. Preparation of
 i. Plaster of Paris cast
 ii. Perspex cast
 iii. Orifit / Aquaplast immobilization cast and others
 iv. Shield (use of Styrofoam Cutter)
 v. Tissue Compensators
 vi. Electron Lead Cutout
 vii. Mouth Bite
 viii. Computerized Tissue Compensator Preparation (optional)

2. Teletherapy & Brachytherapy Treatment planning: (E)
 a. Iso-dose plotting
 b. Studying of dose distribution to tumor and Normal tissues
 c. Calculations of Teletherapy & Brachytherapy treatment time.
 d. 3D Planning (optional)
 e. Use of Computers and TPS

3. Simulation equipment parts, operation, principles: (E) Simulation of:
 i. AP/PA portals for pelvis in cancer cervix with SSD Techniques.
 ii. Simulation of four fields of pelvis in cancer cervix with SAD Technique.
 iii. Simulation of oblique fields for cancer oesophagus with SAD Techniques.
 iv. Simulation of tangential field of a case of Ca. Breast
 v. Simulation of whole Brain Irradiation
 vii. Barium Swallow Radiology Technique, Barium meal, Barium follow through
 viii. Intravenous pyelography
 ix. CT Simulation

4. Radiation Safety and Protection (E)

5. Quality Assurance in Radiotherapy (E)

PRACTICALS SCHEME OF EXAMINATION 80 Marks

(Common Practical)

1. Mould Room 20 Marks
2. Teletherapy & Brachytherapy Treatment planning 20 Marks
3. Simulation equipment parts, operation, principles 20 Marks
4. Radiation Safety and Protection 10 Marks
5. Quality Assurance in Radiotherapy 10 Marks
SOCIOLOGY

Teaching Hours : 20

COURSE DESCRIPTION

This course will introduce student to the basic sociology concepts, principles and social process, social institutions [in relation to the individual, family and community and the various social factors affecting the family in rural and urban communities in India will be studied.

Introduction :

1. Meaning - Definition and scope of sociology
2. Its relation to Anthropology, Psychology, Social Psychology
3. Methods of Sociological investigations - Case study, social survey, questionnaire, interview and opinion poll methods.
4. Importance of its study with special reference to health care professionals

Social Factors in Health and Disease:

1. Meaning of social factors
2. Role of social factors in health and disease

Socialization :

1. Meaning and nature of socialization
2. Primary, Secondary and Anticipatory socialization
3. Agencies of socialization

Social Groups:

1. Concepts of social groups, influence of formal and informal groups on health and sickness. The role of primary groups and secondary groups in the hospital and rehabilitation setup.

Family :

1. The family, meaning and definitions
2. Functions of types of family
3. Changing family patterns
4. Influence of family on individual’s health, family and nutrition, the effects of sickness in the family and psychosomatic disease and their importance to physiotherapy

Community :

1. Rural community: Meaning and features - Health hazards to rural communities, health hazards to tribal community.
2. Urban community - Meaning and features - Health hazards of urbanities

Culture and Health:

1. Concept of Health
2. Concept of culture
3. Culture and Health
4. Culture and Health Disorders

Social Change:

1. Meaning of social changes
2. Factors of social changes
3. Human adaptation and social change
4. Social change and stress
5. Social change and deviance
6. Social change and health programme
7. The role of social planning in the improvement of health and rehabilitation

Social Problems of disabled:
Consequences of the following social problems in relation to sickness and disability remedies to prevent these problems

1. Population explosion
2. Poverty and unemployment
3. Beggary
4. Juvenile delinquency
5. Prostitution
6. Alcoholism
7. Problems of women in employment

Social Security:

Social Security and social legislation in relation to the disabled

Social Work:

1. Meaning of Social Work
2. The role of a Medical Social Worker
INDIAN CONSTITUTION

Prescribed for the First Year students of all degree classes

Unit-I:

Unit-II:
The democratic institutions created by the constitution Bicameral system of Legislature at the Centre and in the States.

Unit-III:
Fundamental Rights and Duties their content and significance.

Unit - IV:

Unit - V:
Special Rights created in the Constitution for: Dalits, Backwards, Women and Children and the Religious and Linguistic Minorities.

Unit-VI:
Doctrine of Separation of Powers legislative, Executive and Judicial and their functioning in India.

Unit - VII:
The Election Commission and State Public Service commissions.

Unit - VIII:
Method of amending the Constitution.

Unit - IX:
Enforcing rights through Writs:

Unit - X:
Constitution and Sustainable Development in India.

Unit - XI:
Consumer protection act and other acts pertaining to Medical Profession.

Books:

ENVIRONMENT SCIENCE AND HEALTH

Introduction to Environment and Health

Sources, health hazards and control of environmental pollution

Water

The concept of safe and wholesome water.

The requirements of sanitary sources of water.

Understanding the methods of purification of water on small scale and large scale.

Various biological standards, including WHO guidelines for third world countries.

Concept and methods for assessing quality of water.

Domestic refuse, sullage, human excreta and sewage their effects on environment and health, methods and issues related to their disposal.

Awareness of standards of housing and the effect of poor housing on health.

Role of arthropods in the causation of diseases, mode of transmission of arthropod borne diseases, methods of control

Recommended Books.

2. Questions and Answers in Environmental Science - Basu Orient Longman Pvt. Ltd.
3rd Year - RADIOTHERAPY- PART-II A

RADIATION PHYSICS

Principles of Radiation detection and measurement:

Biological Effects of Radiation:

Chemical effects of Radiation, radiolysis of water, production of free radicals, radical's reactions, G-value. Effects - Stochastic and non-stochastic effects, chromosome aberrations and mutations. Radiation effects on whole body (early effects and late effects). Concept of doubling dose.

Radiation Protection:

Philosophy of radiation protection - historical development, Maximum permissible exposure concept; Annual Dose Equivalent Limits (ADEL) ALARA concept; international recommendations and current code of practice. Annual dose limits for public & Radiation workers. Protection of Public and Radiation workers.

Protective materials: Concrete, lead, lead - impregnated substances, building materials, concept of barriers, lead equivalents and variations with quality.

Teletherapy Bunker (Room) Design (Telecobalt, Linear Accelerator). Radiation protection features taking into account the work load, use factor, occupancy factor. Wall features with respect to primary beam and secondary radiation. Ceiling thickness depending on occupancy on the floor above Teletherapy room. Positioning of Air conditioning outlets.

Design of Brachytherapy room: difference between public area and restricted areas. Radioactive source movement, control and maintenance of records. Protection instruments and personnel and area monitoring. (Survey meters, area monitors, pocket dosimeters and contamination monitors).

Production of X- and Gamma Ray Beams for Therapeutic purposes:

- Tubes and high-tension circuits for the production of X-ray from 5 to 500 curie Kv. Insulation and cooling problems in Radiotherapy tubes.
- Mains voltage compensation. Control of tube voltage.
- The control panel and control. The filament circuit.
- Timers safety devices and interlocks.
- Basic principles of mega voltage X-ray Machines.
• Distribution of Radiation around the target.
• Gamma ray beam unit.

Interaction of X and Gamma Rays with Matter:

• Photoelectric absorption; Compton scattering; pair production. Dependence on the nature and atomic number of the absorber and on the radiation energy.
• Range of secondary electron and its practical importance.
• Principles of filtration, protection and beam definition.
• Filters, beam - flattening devices, diaphragms and applicators.

Measurement of X and Gamma Rays:

• The roentgen and the rad,
• Quality. Half value thickness and its measurement,
• Methods of measurement; ionization; photographic; scintillation; calorimetric; thermo luminescent, their relative advantages.
• Ionization dosimeters; dose - rate, integrating and capacitor types.
• The Geiger - Muller counter.
• Scintillation counters and dosimeters.

Practical Dosage Measurements and Calculation:

• Initial calibration. Site of focal spot or source; alignment of applicator or diaphragm turntable end of the applicator of diaphragm.
• Variation of dose rate across the beam in air.
• Air, surface and depth doses; factors affecting them.
• Calculation of treatment times.
• Isodose curves.
• The effect of focal spot or surface source site; penumbra.
• Energy absorption in the body tissues and its effects on depth dose.

Protection:

• Protective materials in common use,
• Room and machine radiation - protection in X- and Gamma - ray beam installations,
• Care and custody of small sealed radioactive sources (for example radium, caesium-137, Strontium 90).
• Precautions to be taken in the use of dispensing of radioactive solutions.
• Relevant protection recommendations and current code of practice
Technical aspects of X and Gamma Ray Therapy:

- Tumour location and verification, principles of simulators,
- Field combinations and treatment planning,
- Beam direction devices,
- Compensating filters (for example wedges)
- Physical principles of moving field and grid therapy,
- Special aspects of Radiotherapy using mega voltage radiations, including electron beam therapy.

Clinical Dosimetry for Photon and Electron Beams

- Dose distribution along beam axis
- Dose distribution off axis
- Variation of dose rate with distance and collimator settings
- Manual calculation of treatment times
- Beam modifiers (bolus, wedge, compensators)
- Computer dose calculations
- Definition of volumes and their significance
- Single, parallel and multi-field technique
- Effect of change of energy, beam direction, beam collimation, irradiation
- Geometry
- Calculated and applied doses and beams against professional knowledge

EXTERNAL BEAM THERAPY

Radiation equipment

- Principles and functioning of low energy x-rays
- Principles and functioning of Tele-cobalt machines
- Principles and functioning of linear accelerators

Dose delivery to the patient

- Immobilisation of patient
- Interpretation of the treatment prescription and plan
- Setting up of the prescribed beam parameters and check against reference marks
- Preparation, fixation and care of in vivo dosimeters (if available)
- Registration of the delivered beam parameters on a daily basis
- Documentation of portal verification and results of in vivo dosimetry
- Surveying the patient during the treatment procedure

Special techniques

- Total body irradiation
- Memi-body irradiation
- Conformal Beam Radiation Therapy
• Intensity Modulated Radiation Therapy
• Stereo tactic radiotherapy
• Intra-operative radiotherapy
• Image guided radiotherapy
• Tomotherapy

Technical Aspects of the use of Radioactive Sources in the Body:
• Construction, measurement, testing and properties of small sealed radioactive sources,
• Dose calculations involving the inverse square law,
• Physical principles of moulds and implants,
• Superficial beta ray therapy. Measurement beta ray dose.
• Clinical beta-ray appliances.
• Physical principles of the clinical use of unsealed radioactive sources.

Construction of Cobalt -60 Teletherapy Units:
• Types of source drawers (cylindrical/ Rotating Drum)
• Isocentric Setup and design of the Unit
• Collimation: Primary, secondary & tertiary
• Laser beam, Beam direction devices, back pointer, pin & arc principles.
• Beam modifying devices: Wedge Filters, Tissue compensators.
• Blocks, Breast cone.
• Radiation safety aspect
• Understanding why strength of Teletherapy source at a given distance, definition of RHM/ RMM

Construction of Linear Accelerator
• Isocentric Setup and design of the Unit
• Collimation: Primary, secondary & tertiary, Symmetric/Asymmetric.
• RF production, Accelerator Tube, Bending Magnets
• Targets of X-ray and Electron beam production
• Radiation safety aspect: Ionization chamber, quality assurance checks.
• Definition of TMR, TPR with respect to high energy x-ray beams
• Concept of monitoring units instead of timer as in Telecobalt
• Measurement of output factor and its calibration
• Multileaf collimator: 3D conformal /
• Stereotactic Radiation therapy & Surgery/IMRT.
• Portal imaging/IGRT.

BRACHYTHERAPY
• Knowledge of use of radionuclides and after loading equipment (low, medium, high and pulsed dose rate)
• Preparation of the source holders (applicators, catheters)
• Preparation of the patient including radiographs for dosimetry and preparation of the moulds
• Monitoring of the patient before, during and after treatment
• Accurate and complete recording of documentation of all the parameters relevant to the treatment
• Aftercare of the used radioactive sources with emphasis on safety
• Clinical Dosimetry for Brachytherapy

OTHER TREATMENT MODALITIES

• Gene therapy
• Photodynamic therapy
• Unsealed radioactive nuclides
• Radiation enhancers - hyperthermia, radiosensitisers

LOCALISATION AND SIMULATION

• Principles and functioning of simulators
• Patient positioning, knowledge of fixation techniques
• Knowledge of simulation techniques for a broad range of indications and use of contrast media
• Contour taking techniques and reference marking
• Use of CT and MR images
• Data recording and transfer

QUALITY ASSURANCE - METHODS

• Equipment and auxiliary materials (to include care of)
• Treatment procedures - accuracy, reproducibility and verification
• Data handling
• Monitoring and evaluation of QA procedures
• Calibration of instruments
• Emergency procedures

MOULD ROOM TECHNIQUES

• Immobilization Devices & techniques for patients and their preparation
• Beam shaping devices (block, compensators etc.) and their preparation
• Bolus material and their preparation
• Moulds for Brachytherapy

BASIC RADIOLOGIC IMAGING TECHNIQUES

• Radiologic Film-types, exposure, development
• Production of Radiographic Image using simulator, CT Scanner or conventional x-ray machines
• Improving Image Quality
• Fluoroscopy
• Dark Room Procedures
Scheme of Examination Theory

There shall be one theory paper of three hours duration carrying 60 marks. Distribution of type of questions and marks for Radiotherapy Part II A shall be as given under.

<table>
<thead>
<tr>
<th>TYPE OF QUESTION</th>
<th>NUMBER OF QUESTIONS</th>
<th>MARKS</th>
<th>SUB-TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>3 questions to attempt 2 (10 marks each)</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>7 questions to attempt 5 (5 marks each)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>SHORT ANSWER TYPE</td>
<td>7 questions to attempt 5 (5 marks each)</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL MARKS</td>
<td></td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>
3rd Year - RADIOTHERAPY- PART-II B

PRINCIPLES AND PRACTICE OF RADIO THERAPY

Sec A 1. Diagnostic Workup and Treatment Principles and Radiotherapy Techniques.

A Radiotherapeutic Management of the following Cancer & occasional Benign Diseases
- Skin cancer
- Head and neck tumours
- Brain tumours
- GI tract tumors (oesophagus, rectum, anus)
- Lung cancer
- Lymphomas
- Breast cancer
- Gynecological cancers
- Prostate cancer
- Bladder cancer
- Seminoma
- Pediatric Malignancies

B. Clinical applications of techniques of Radiotherapy:
- Teletherapy techniques
- use of conventional fields SSD, SAD , Rotation
- use of complex treatment plans - quality assurances, verification etc
- use of radiation sensitizers & radiation protectors and their importance with respect to timing of the radiotherapy exposure
- patient positioning, immobilization, daily reproduction errors and corrections
- Combination of Teletherapy and Brachytherapy
- Post & Pre operative Radiotherapy
- Special Techniques : 3D Conformal RT, IMRT, SRS/SRT -
 - Patient setup, Immobilization
 - Simulation / CT Simulation and Verification with quality assurance checks
 - Use of Immobilization devices & Frames - careful handling
 - Daily reproduction and quality assurances
 - Port filming and isocentre verification

C. Clinical applications of Special teletherapy techniques.
- Total body irradiation
- Hemi-body irradiation
- Conformal Beam Radiation Therapy
- Intensity Modulated Radiation Therapy
- Stereo tactic radiotherapy
- Intra-operative radiotherapy
- Image guided radiotherapy
- Tomotherapy
Sec B

2. PSYCHOSOCIAL MANAGEMENT
 • Procedures for adaptation and rehabilitation of the person with cancer- Body
 Mechanics, Moving & Transferring Patients- Patients with Spinal cord injury,
 Fractured Extremity, Agitated & Confused patients
 • Pediatric, Geriatric Patients.
 • Patient with Ostomy, Gastric tube, Tracheotomy.
 • Assisting with Drug and Contrast Administration,
 • Counselling skills
 • Role of effective communication
 • Complementary therapies
 • Stress and stress management
 • Hospice and terminally ill

3. QUALITATIVE AND QUANTITATIVE METHODS OF RESEARCH
 • Basic statistics, Interpretation of Research Publications
 • Report writing

4. MEDICAL, LEGAL AND ETHICAL ASPECTS
 • Getting the consent of the patient
 • Confidentiality, Data handling and information control
 • Non-discriminatory practice
 • The professional role of the Radiotherapy technologists

5. HEALTH AND SAFETY
 • Waste management and source Disposal
 • Legislation: National and international
 • Health and safety at work
 • Emergency procedures
 • Cardiopulmonary Resuscitation Procedures (CPR)
 • Self Help Groups & NGO’s and other organizations
 • Funding agencies

6. RECENT ADVANCES IN RADIOTHERAPY.
 3D CRT, IMRT, Particle Beam Therapy, IGRT, Radiation Sensitizer and Protectors, Cyber Knife,
 Tomotherapy, Gamma Knife

PRACTICALS:

RADIOTherapy-II
Note: (E) Denotes Practical Prescribed in University Examinations.

1. Cobalt-60 machine: various parts, its working its Accessories, Beam Direction devices and control
 console. (E)
2. Linear Accelerator: Various parts, it's working its Accessories, Beam Direction devices and control
 console. (E)
3. **Simulation and Treatment Techniques (E)**

 Execution of Treatment as Per Doctors Prescription in radiation therapy chart
 Ability to understand the, patients disease, patients general condition, shifting the patient into
treatment room & couch, patient positioning, use of immobilization devices and preparation of the
same, verification and quality assurances.
 a. Cancer Oesophagus
 b. Cancer Cervix
 c. Cancer Breast
 d. Glottic cancer
 e. Nasopharyngeal cancer
 f. Brochogenic cancer
 g. Whole Brain
 h. Cranio-Spinal Axis Irradiation (optional)
 i. Irregular Field (including Mantel Field)
 j. Special Techniques (Rotation/ Arc etc.)
 k. Newer Techniques (optional)

4. **Brachytherapy:**

 l. Manual after loading applicators: Various types: I/c, I/Vaginal, I/L Principles, its care, sterilization,
uses, safety measures.

 m. (Optional) Remote After Loading machines, - LDR / HDR: Parts, working, operation and
precautions.

 o. Preparation of Radioactive Source for Brachytherapy

5. **I/c application cancer cervix. Application, simulation study of dose distribution, preparation of
sources, loading of sources and treatment and care and removal and storage of sources.** (E)

6. **I/L Radiotherapy application. Application, simulation, study of dose distribution, preparation of
sources, loading of sources and treatment and care and removal and storage of sources.**

7. **Advanced Training**
 a. Dynamic Wedges
 b. Stereo Tactic Radiotherapy / Surgery
 c. 3D CRT
 d. IMRT
 e. Portal Imaging Method
 f. HDR Brachytherapy
SCHEME OF EXAMINATION

University Examination

Scheme of Examination Theory

There shall be one theory paper with two sections of three hours duration carrying 60 marks. Distribution of type of questions and marks for Radiotherapy Part II B (Sec A & B) shall be as given under.

<table>
<thead>
<tr>
<th>TYPE OF QUESTION</th>
<th>NUMBER OF QUESTIONS</th>
<th>MARKS</th>
<th>SUB-TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSAY TYPE</td>
<td>Section A - 2 questions to attempt 1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Section B - 2 questions to attempt 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 questions to attempt 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHORT ESSAY TYPE</td>
<td>Section A - 3 questions to attempt 2</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Section B - 3 questions to attempt 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 questions to attempt 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHORT ANSWER TYPE</td>
<td>Section A - 6 questions to attempt 5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL MARKS</td>
<td>Section B - 6 questions to attempt 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRACTICALS SCHEME OF EXAMINATION 80 Marks

(One Common Practical)

1. Cobalt-machine ---------- 20 Marks
2. LinearAccelerator -------- 20 Marks
3. SimulationandTreatmentTechniques ---------- 20 Marks
4. Spotters
 a. I/capplicationcancercervix ---------- 20 Marks
 b. I/LRadiotherapyapplication ---------- 20 Marks
 c. Advanced Training
BIO STATISTICS

Time Allotted: 20 Hours

Course Description:
Introduction to basic statistical concepts: methods of statistical analysis; and interpretation of data

Behavioural Objectives:
Understands statistical terms.
Possesses knowledge and skill in the use of basic statistical and research methodology.

Unit - I : Introduction
Meaning, definition, characteristics of statistics.
Importance of the study of statistics.
Branches of statistics.
Statistics and health science including nursing.
Parameters and estimates.
Descriptive and inferential statistics.
Variables and their types.
Measurement scales

Unit - II: Tabulation of Data
Raw data, the array, frequency distribution.
Basic principles of graphical representation.
Types of diagrams - histograms, frequency polygons, smooth frequency polygon, cumulative frequency curve, ogive.
Normal probability curve.

Unit - III : Measure of Central Tendency
Need for measures of central tendency
Definition and calculation of mean - ungrouped and grouped
Meaning, interpretation and calculation of median ungrouped and grouped.
Meaning and calculation of mode.
Comparison of the mean, and mode.
Guidelines for the use of various measures of central tendency.

Unit - IV : Measure of Variability
Need for measure of dispersion.
Therange, theaverage deviation.
Thevariance and standard deviation.
Calculation of variance and standard deviation ungrouped and grouped.
Properties and uses of variance and SO
Unit - V: Probability and Standard Distributions.
 Meaning of probability of standard distribution.
 The Binominal distribution.
 The normal distribution.
 Divergence from normality - skewness, kurtosis.

Unit - VI: Sampling Techniques
 Need for sampling - Criteria for good samples.
 Application of sampling in Community.
 Procedures of sampling and sampling designs errors.
 Sampling variation and tests of significance.

Unit - VII: Health Indicator
 Importance of health Indicator.
 Indicators of population, morbidity, mortality, health services.
 Calculation of rates and rations of health.

Recommended Books.

 Jaypee Brothers.

B.Sc. Allied health Sciences - I year
BASICS IN COMPUTER APPLICATIONS

The course enables the students to understand the fundamentals of computer and its applications.

1. **Introduction to Data processing**:
 - Features of computers, Advantages of using computers. Getting data into / out of computers. Role of computers. What is Data processing? Application areas of computers involved in Data processing. Common activities in processing. Types of Data processing, Characteristics of information. What are Hardware and Software?

2. **Hardware Concepts**:

Concept of Software.

- Computers in medical electronics
- Basic Anatomy of Computers

Principles of programming

- Computer application - principles in scientific research ; work processing, medicine, libraries, museum , education, information system.

Data processing

Computers in physical therapy - principles in EMG, Exercise testing equipment, Laser.

Scheme of Examination for MEDICAL ELECTRONICS including COMPUTER APPLICATIONS

One Written (Theory) paper: Maximum Marks: -80 marks.
No Practical or Viva voce examination.
CLINICAL TRAINING

Content and purpose

The clinical component has been designed to complement the academic program and runs throughout the course. The placements have to be designed so that the students will be able to observe the practical application of the academic course wherever possible. Content can be tailored to meet either National or Local needs as is deemed to be most appropriate.

1ST YEAR: INTRODUCTION TO THE HOSPITAL SETTING

The purpose of this phase is:

I. For the students to become familiar with some of the practical applications of the academic course,
ii. To introduce the wider hospital setting,
iii. To help the students to identify the various disciplines within a hospital, their role & the importance of cooperation,
iv. To introduce patients in a clinical setting and begin to acquire basic communication skills.

2ND YEAR: SKILLS NECESSARY TO WORK IN A HOSPITAL

To be completed very early in the training. The following procedures will be demonstrated to the students who will be expected to observe or participate as appropriate.

General procedures to be observed when patients attend for appointment:

- Lifting and moving techniques
- Administration of bedpans, vomit bowls, etc.
- Care and management of drugs in the hospital setting

Correct procedures when dealing with patients with infectious diseases

- Universal precautions

Correct procedures when dealing with immuno-compromised patients:

- Hygiene practices,
- Simple dressings,
- Sterile procedures,
- Oxygen administration.

Care of patients with:

- breathing difficulties,
- Terminal illness,
- Mental impairment,
- Physical disability.
- Special care of the geriatric and pediatric patient.
- Stoma care.
- Handling of patients with bone metastases.
- Care of the patient following an anaesthetic.
- Care of lines in the incubated patient.
- Communication skills with patients and relatives
- Terminally ill and Hospice
2ND & 3RD YEAR : SKILLS RELATED TO WORKING IN A RADIOTHERAPY DEPARTMENT

Introduction to the Radiotherapy Department. Time will be spent on each unit within the department. The purpose of this phase is to:

In the Department:

i. Familiarize the students with the different units within the department and the procedures carried out on each unit.
ii. Enable the student to recognize and relate to the basic terminology introduced in the academic program.
iii. Help to establish a sense of identity within the student group and to understand the role of the RTT in the management of cancer.
iv. Introduce the students to the staff of the department.
v. Help the student to understand team roles.
v. Familiarize the students with written QA programs within the department.

Equipment's and integration:

i. Begin to become competent in the manipulation of the radiotherapy equipment.
ii. Be able to communicate effectively with patients.
iii. Begin to integrate into the department as part of the radiotherapy and multidisciplinary teams.
iv. Begin to empathize with patients and to appreciate their own feelings in the clinical situation.
v. Being able to handle and achieve proficiency in Mould room techniques.

Safety & Precautions in Practice:

i. Identifying the functions on the pedestal/handset and safely operating these on the treatment units.
ii. Identifying the functions on a control panel, indicating their purpose and safely using these when appropriate.
iii. Safely using the accessory equipment in the correct context.
iv. Correctly and safely using equipment related to patient immobilization.
v. Identifying, locating, understanding and safely using the radiation protection features incorporated in the treatment areas, e.g. Door interlocks, visible and audible warning signs, primary and secondary barriers, etc.
vi. Setting up single and parallel opposed fields under supervision.
vii. Assisting in the set up of multi field techniques.
viii. Identifying the cassettes and films commonly used for localization and verification on the simulator and treatment units.
ix. Demonstrating the correct procedure for developing films (daylight processing and dark room practice) and correctly unloading and reloading cassettes.

TO ACHIEVE CLINICAL COMPETENCE

The purpose of this phase is for the students to:

i. Demonstrate competence in the manipulation of radiotherapy equipment.
ii. Demonstrate an ability to anticipate the physical and psychological needs of the cancer patient and respond to them.
iii. Demonstrate the ability to communicate with ease with other staff involved in the multidisciplinary treatment of the cancer patient.
iv. Increasingly participate as a team member in all aspects of the patient's management in radiotherapy in preparation to work as a qualified radiation therapist.
v. Demonstrate competence in simulator procedures.
vi. Acquire basic computer skills.
vii. Participate in the development/revision of formal written quality assurance procedures / programme.
viii. Set up a patient on their first visit.
TO ACHIEVE FINAL COMPETENCY SUBSTANTIAL TIME WILL BE SPENT:

i. Setting up multi field techniques under supervision.
ii. Participating in the quality control procedures in the department in accordance with the protocols.
iii. Simulating and localizing a target volume.
iv. Describing the purpose of health and safety and ionizing radiation regulations.
v. Discussing the role of local rules and outline those in place in the different departments.

Graded Responsibility (structured Training Schedule)

1 Year: Theory classes, observation in treatment planning and treatment execution.

II Year: Theory classes, Participation in OPD, Mould room techniques, Treatment planning, treatment execution under the supervision of consultant, Senior RTT, Project Work.

III Year: Theory classes, Participation in OPD, Treatment planning and execution under supervision of Consultant & Senior RTT. Submission of Project work, Mould Room Techniques, Quality Assurance.

Rotation Posting

Students may be posted to other relevant departments or other centers with better and latest equipment for a minimum period of 1 to 2 months, for completion of training in recent advances in the Specialty. The student on completion of the training shall submit a report duly signed by the concerned department to the HOD Radiotherapy/ Radiation Oncology.

MONITORING LEARNING PROGRESS

It is essential to monitor the learning progress of each candidate through continuous appraisal and regular assessment. It not only also helps teachers to evaluate students but also students to evaluate themselves. The monitoring be done by the staff of the department based on participation of students in various teaching/learning activities. It may be structured and assessment be done using sample checklists provided (Assessment forms).

The learning out comes to be assessed should included: (I) personal Attitudes

ii. Acquisition of Knowledge (iii) Clinical and operative skills (iv) Teaching skills

Candidate should be encouraged to participate in teaching activities, seminars and literature reviews.

1. Periodic tests:

 The departments may conduct periodir tests (Internal Assessment), The tests may include written papers, practical with viva voce.

2. 6) Work diary / Log Personal Attitudes.

 The essential items are:
 - Caring attitudes
 - Initiative
 - Organizational ability
 - Potential to cope with stressful situations and undertake responsibility
 - Trust worthiness and reliability
 - To understand and communicate intelligibly with patients and other
 - To behave in a manner which establishes professional relationships with patients and colleagues
 - Ability to work in team
 - A critical enquiring approach to the acquisition of knowledge

 The methods used mainly consist of observation. It is appreciated that these items require a degree of subjective assessment by the guide, supervisors and peers.
3. Acquisition of knowledge:

The methods used comprise of 'Log Book' which records participation in various teaching / learning activities by the students. The number of activities attended and the number in which presentations are made are to be recorded. The log book should periodically be validated by the supervisors, some of the activities are listed. The list is not complete. Institutions may include additional activities, if so, desired.

4. Technical skills

Day to Day work: Skills on the Machines should be assessed periodically. The assessment should include the candidates' sincerity and punctuality, analytical ability and communication skills.

Clinical and procedural skills: The candidate should be given graded responsibility to enable learning by apprenticeship. The performance is assessed by the guide by direct observation. Particulars are recorded by the student in the log book.

5. Teaching Skills:

Book:

Every candidate shall maintain a work diary and record his/her participation in the training programs conducted by the department such as practical, literature reviews, seminars, etc. Special mention may be made of the presentations by the candidate as well as details of Practical or laboratory procedures, if any conducted by the candidate.

6. Records:

Records, logbooks, Project Report and marks obtained in tests will be maintained by the Head of the Department and will be made available to the University as indicated. The record books maintained by the student should be submitted to the Head of the department 6 months prior to completion of the course and the head of the department makes a certification of the academic progress an assessment of student performance throughout the said course shall be made by the HOD.

The log book is a record of the important activities of the candidates during his training internal assessment should be based on the evaluation of the logbook collectively, logbooks are a tool for the evaluation of the training programme of the institution by external agencies. The record includes academic activities as well as the presentations and procedures carried out by the candidate.

RECOMMENDED BOOKS

BASIC BOOKS:

3. Anatomy and Physiology for Nurses,
T.W.A. Glenister, William Heilemann Medical Books LTD., London

5. Anatomy and Physiology in Health and Illness, Anne Waugh, Allison Grant, Illustrations by Graeme Chambers.

REFERENCE BOOKS:

1. B.D. Chaurasia, Human Anatomy, CBS Publishers

3. Radiation Therapy Physics
 William Hendee
 Mosby

4. The Physics of Radiation Therapy, Second Edition,
 Fiaz M. Khan, Ph.D.
 Williams & Wilkins.

5. Clinical Oncology,
 Geoffrey R. Weiss, Associate Professor of Medicine, The University of Texas Health Science Center
 at San Antonio.

6. Cancer Facts, A concise Oncology Text,
 James F. Bishop,
 Harwood Academic Publishers,

8. A Colour Atlas of Human Anatomy,
 Wolfe Medical Publications

10. Principles and Practice of Radiation Oncology, Carlos A Perez,

15. Text of radiation physics; Author - khan; 5th edition, and Meredith and Massey
MONITORING LEARNING PROGRESS

LOG BOOK

ASSESSMENT FORMS

- Template
Centres may develop their own criteria based on local practice.

PRACTICAL ASSESSMENT

(To be completed by the Clinical Assessor/Supervisor within two days of discussion with the student)

Date ..

<table>
<thead>
<tr>
<th>EMERGENCY PROCEDURES</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student indicated the position of the emergency on/off switches for electrical and radiation safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student indicated the location of the oxygen, resuscitation and fire fighting equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familiarity with the treatment documents of the Quality Assurance programme</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TREATMENT PREPARATION</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student correctly interprets the treatment prescription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student correctly prepares the treatment room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student correctly prepares the equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student correctly identifies the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student assesses the patient's condition and responds appropriately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correctly identifies the treatment site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNIQUE</td>
<td>FIELD 1</td>
<td>FIELD 2</td>
<td>Not applicable</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Student correctly positions patient on the treatment couch</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Student correctly set the FSD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student demonstrates accurate beam alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student correctly sets the interlocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student monitors the patient through the treatment procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student cleans the room and prepares for the next patient</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARE OF THE PATIENT</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Student gave adequate explanation of procedure to the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Student assisted the patient as required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Student was considerate to the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Student demonstrated suitable aftercare to the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Student paid attention to the specific hygiene practices and universal precautions relevant to the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNACCEPTABLE PERFORMANCE / FAILURE

1. Failure to identify the location of the various items of emergency equipment.

2. Failure to check the identity of the patient and/or the site of treatment.

3. Failure to assess pre-treatment condition and to act appropriately (the assessor intervenes if he/she considers the patient unfit for treatment).

4. Preparing to give an incorrect treatment.
Please outline any special problems which arose during the assessment procedure which may have influenced the result.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

Assessor's/Supervisor's Signature..

I have seen and discussed this assessment with the Assessor / Supervisor

Student's Signature...

Date..

Multi field treatment with / without shielding

Name..

Student ID..

Stage in training ...

Clinical Department..

Date..

Clinical Assessor..

...
Treatment related information

Diagnosis ..

Site for treatment ...

Technique ..

Treatment unit including the type and energy of radiation..

..

Fields to be treated for the purpose of assessment...

..

Date patient consent was obtained...

..

Student's signature...

..

I agree that the above information is correct.

..

Clinical Assessor / Supervisor's signature..

..
PRACTICAL ASSESSMENT

(To be completed by the Clinical Assessor/Supervisor within two days of the pre-evaluation discussion with the student)

Date

<table>
<thead>
<tr>
<th>PREPARATION (Student accurately / correctly)</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicate position of emergency on/off switches for electrical and radiation safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicated location of oxygen, resuscitation and fire-fighting equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes any pre-treatment requirement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full bladder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing clinic visit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietician appointment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To be seen on setup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port film</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (please indicate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interprets treatment prescription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepares the treatment room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepares the equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillows / headrest / immobilization device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielding devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifies the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluates patient, condition and informs the radiographer of any problems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNIQUE (Student demonstrates accuracy in)</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioning of patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of immobilization devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setting FSD / SSSD / SAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of beam directional devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of beam definition devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of bolus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of beam attenuation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student correctly sets interlocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (please indicate)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRACTICAL ASSESSMENT

To take place between the clinical assessor and the student at a designated time prior to the formal practical assessment.

Date ..

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student has reviewed all the relevant information for this patient.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STUDENT WAS ABLE TO GIVE INFORMATION ON</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISEASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extent of disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common routes of spread</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREATMENT VOLUME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas included</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomical field limits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical structures and their radiation tolerance dose (s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAM MODIFICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reasons for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TREATMENT PRESCRIPTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily fractionation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any modification for this treatment and the reasons for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATIENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment intent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable side effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appropriate advice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any other relevant information to this individual patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any anticipated problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Please indicate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOSE DELIVERY (Student correctly)</td>
<td>YES</td>
<td>NO</td>
<td>Not applicable</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----</td>
<td>----</td>
<td>----------------</td>
</tr>
<tr>
<td>Double checks dose prescription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicates monitor units / time to be set</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observes control panel throughout the treatment procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observes patient throughout the treatment procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleans the treatment room</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PATIENT CARE Student :</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asked patient re overall well-being</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responded adequately to problems reported by the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responded adequately to questions asked by the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reported any problems / queries to the radiographer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gave an adequate explanation of the treatment procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gave appropriate level of assistance to the patient in the treatment room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was considerate to the needs of the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paid attention to the specific hygiene practices relevant to the patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrated suitable aftercare</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROFESSIONALISM</th>
<th>YES</th>
<th>NO</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asked questions of the radiographers appropriate to this patient and technique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrated initiative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worked well as a member of the team</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: ..
..
..
..
UNACCEPTABLE PERFORMANCE / FAILURE

1. Failure to identify the location of the various items of emergency equipment.
2. Failure to check the identity of the patient and / or the site of treatment.
3. Failure to assess pre-treatment condition and to act appropriately (the assessor intervenes if he/she considers the patient unfit for treatment).
4. Preparing to give an incorrect treatment.

Please outline any special problems which arose during the assessment procedure which may have influenced the result:

..
..
..
..
..
..
..
..
..
..
..

Assessor's/Supervisor's Signature

I have seen and discussed this assessment with the Assessor / Supervisor

Student's Signature

Date
Assessment of Clinical Placement

Name ..

Unit ..

Phase in programme ..

Grade awarded for professional development ..

Grade awarded for assessment ..

Course Director's/Clinical Coordinator's signature..,

Student's signature ..

..
Assessment of Patient Management

At a level appropriate to his/her stage in training the student should demonstrate an ability to:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Maximum Marks</th>
<th>Marks Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpret information from treatment sheet and patients notes</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Carry out appropriate preparation of treatment room and equipment</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Discuss the merits or otherwise of the treatment plan for individual patients</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Recognise signs of reactions to treatment</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Reassure and support patient throughout the treatment procedure</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Communicate effectively with patients, relatives and other professionals</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Appropriately record details of treatment and other relevant information</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL MARKS</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Comments of clinical supervisor:

Comments of student:

Clinical Supervisor's signature: ..

Student's signature: ..
Assessment of Professional Development

<table>
<thead>
<tr>
<th>Score on a scale of 1 to 5. (1 unsatisfactory and 5 excellent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional appearance</td>
</tr>
<tr>
<td>Reliability</td>
</tr>
<tr>
<td>Initiative, including willingness to learn enquire/research while on placement</td>
</tr>
<tr>
<td>General handling and positioning of patients</td>
</tr>
<tr>
<td>Professional manner</td>
</tr>
<tr>
<td>Ability to work independently and as part of a team</td>
</tr>
<tr>
<td>Attention to safety aspects</td>
</tr>
</tbody>
</table>

Comments of clinical supervisor:

Comments of student:

Clinical Supervisor's signature: ..

Student's signature: ...
PATIENT MANAGEMENT

Interprets information
Correct identification / need for blood counts / clinic visit, etc.

Implements preparation
Field size / accessory equipment, etc.

Merits of treatment plan
Aim of treatment / reasons for modifications / lead, etc.

Reactions
Aware of normal and reports abnormal to radiographer

Reassurance and support of patient
Appropriate comments and information

Communication
Clear / appropriate / all patients / staff / others

Records
Accuracy / relevance / date / respect for confidentiality
PROFESSIONAL DEVELOPMENT

Professional Appearance
Uniform / overall neatness, etc.

Reliability
Attendance / punctuality / accurate reporting / carrying out tasks

Initiative
Ability / willingness to take action. Asking questions / seeking help

General handling skills
Positioning of patient / accurate setting up, care with lead blocks, etc.

Professional manner
Courtesy / participation in discussion / empathy / common sense

Independence / teamwork
Relevant to stage in training / less dependent on instructions

Safety
Includes radiation awareness, fire prevention, prevention of cross infection, etc.

Comments
Comments should be included to explain the scores / marks from each section and to help guide students on how to improve in these areas and are invaluable to school staff in co-ordinating assessments and placements.

Student comments will provide feedback to clinical staff and to school staff on the placement in general.
Assessment of Technical Competence

At a level appropriate to his/her stage in training the student should demonstrate an ability to:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Maximum Marks</th>
<th>Marks Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify the functions on the pedestal/handset</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Safely operate the pedestal/handset</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Identify the functions on a control panel and indicate their purpose</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Correctly and safely under supervision set the control panels</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Safely use the accessory equipment in the correct context</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Correctly and safely use the immobilization equipment</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Identify and locate the radiation protection features in the treatment areas</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Set up a single field under supervision</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Set up a parallel opposed treatment under supervision</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Assist in the set up of a multi field treatment</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Identify the cassettes and films used in the simulator</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Identify the cassettes and films used in the treatment unit</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Demonstrate the correct procedure for developing films</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Demonstrate the correct procedure for unloading and reloading cassettes</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total Marks</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

Comments of clinical supervisor:

Comments of student:

Clinical Supervisor’s signature..

Student’s signature ..
Assessment of Technical Competence

At a level appropriate to his/her stage in training the student should demonstrate an ability to:

<table>
<thead>
<tr>
<th>Activity</th>
<th>MAXIMUM MARKS</th>
<th>MARKS AWARDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up multi field treatments under supervision</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Participate in the quality control programme</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Simulate and localise a target volume</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Describe the purpose of health and safety regulations</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Describe the purpose of ionising radiation regulations</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Discuss the local roles in the departments</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Complete a basic treatment plan</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Set up a patient on their first visit</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL MARKS</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Comments of clinical supervisor:

Comments of student:

Clinical Supervisor's signature:...

Student's signature:..
Assessment of Basic Clinical Competence and Technical Skill
Please comment on and score out of 10 each of the following:

<table>
<thead>
<tr>
<th>Student accuracy and safety in</th>
<th>Mark awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting up patients</td>
<td></td>
</tr>
<tr>
<td>Using accessory equipment</td>
<td></td>
</tr>
<tr>
<td>Using unit controls</td>
<td></td>
</tr>
<tr>
<td>Setting time, dose, etc.</td>
<td></td>
</tr>
<tr>
<td>Setting interlocks</td>
<td></td>
</tr>
<tr>
<td>Additional (please name)</td>
<td></td>
</tr>
<tr>
<td>TECHNICAL SKILLS</td>
<td>extremely helpful</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Patient setup</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Using accessory equipment</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Using unit controls</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Setting time, dose etc</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Other (please name)</td>
<td>5 4 3 2 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANAGEMENT SKILLS</th>
<th>extremely helpful</th>
<th>unhelpful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding of the appointment system</td>
<td>5 4 3 2 1</td>
<td></td>
</tr>
<tr>
<td>Recording data - treatment sheets etc</td>
<td>5 4 3 2 1</td>
<td></td>
</tr>
<tr>
<td>Checking against treatment plans</td>
<td>5 4 3 2 1</td>
<td></td>
</tr>
<tr>
<td>Other (please name)</td>
<td>5 4 3 2 1</td>
<td></td>
</tr>
</tbody>
</table>
Level of Competency Assessment

TECHNICAL ABILITY

<table>
<thead>
<tr>
<th>TASK</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient positioning</td>
<td></td>
</tr>
<tr>
<td>Use of immobilization devices</td>
<td></td>
</tr>
<tr>
<td>Setting FSD</td>
<td></td>
</tr>
<tr>
<td>Use of beam directional devices</td>
<td></td>
</tr>
<tr>
<td>Use of beam definition devices</td>
<td></td>
</tr>
<tr>
<td>Addition of beam modification</td>
<td></td>
</tr>
<tr>
<td>Beam alignment</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Comments ...
..
..

PATIENT CARE

<table>
<thead>
<tr>
<th>TASK</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good use of questioning</td>
<td></td>
</tr>
<tr>
<td>Approachable</td>
<td></td>
</tr>
<tr>
<td>Considerate</td>
<td></td>
</tr>
<tr>
<td>Demonstrated observational skills</td>
<td></td>
</tr>
<tr>
<td>Gave adequate explanation of Procedure</td>
<td></td>
</tr>
<tr>
<td>Advised/re directed effects and Management</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Comments ...
..
..
TEAM SKILLS

<table>
<thead>
<tr>
<th>TASK</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Adaptable</td>
<td></td>
</tr>
<tr>
<td>Accepts responsibility</td>
<td></td>
</tr>
<tr>
<td>Demonstrates initiative</td>
<td></td>
</tr>
<tr>
<td>Discusses clinical issues</td>
<td></td>
</tr>
<tr>
<td>Considerate to needs of other Team members</td>
<td></td>
</tr>
<tr>
<td>Versatile</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Comments

..
..
..
..
..
..
..
..
KNOWLEDGE AND UNDERSTANDING

Assessment of knowledge on specific techniques taught in the academic programme and consolidated during clinical placement.

<table>
<thead>
<tr>
<th>SITE</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td></td>
</tr>
<tr>
<td>Cervix / Uterus</td>
<td></td>
</tr>
<tr>
<td>Oesophagus</td>
<td></td>
</tr>
<tr>
<td>Bone metastases</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL

Comments ...
..
..
..
..
1.6. Cumulative Total

<table>
<thead>
<tr>
<th></th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>TECHNICAL ABILITY TOTAL</td>
<td></td>
</tr>
<tr>
<td>KNOWLEDGE AND UNDERSTANDING TOTAL</td>
<td></td>
</tr>
<tr>
<td>PATIENT CARE TOTAL</td>
<td></td>
</tr>
<tr>
<td>TEAM SKILLS TOTAL</td>
<td></td>
</tr>
<tr>
<td>FINAL TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

Comments

..
..
..
..

FINAL GRADE AWARDED..

Signed..

Date ...
ACADEMIC ACTIVITIES ATTENDED

Name:
Admission Year:
College:

<table>
<thead>
<tr>
<th>Date</th>
<th>Type of activity specify Lectures, Seminar, literature review, Presentation, Practicals etc</th>
<th>Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PRACTICAL PROCEDURES PERFORMED

Name:
Admission Year:
College:

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>ID No</th>
<th>Procedure</th>
<th>Category O,A,PA,PI*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Key: O -- observed
A -- Assisted a more senior RTT
PA -- Performed procedure under the direct supervision of a senior RTT
PI -- performed independently.*

PRACTICAL PROCEDURES PERFORMED

Name of the college:
Academic Year:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Faculty Member & Others</th>
<th>Name of the student and mean score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Score</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
